首页> 外文OA文献 >A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity
【2h】

A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity

机译:一种用于三维笛卡尔网格的快速视观平面探测器   数值相对论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In 3+1 numerical simulations of dynamic black hole spacetimes, it's useful tobe able to find the apparent horizon(s) (AH) in each slice of a time evolution.A number of AH finders are available, but they often take many minutes to run,so they're too slow to be practically usable at each time step. Here I presenta new AH finder,_AHFinderDirect_, which is very fast and accurate: at typicalresolutions it takes only a few seconds to find an AH to $\sim 10^{-5} m$accuracy on a GHz-class processor. I assume that an AH to be searched for is a Strahlk\"orper (star-shapedregion) with respect to some local origin, and so parameterize the AH shape by$r = h(angle)$ for some single-valued function $h: S^2 \to \Re^+$. The AHequation then becomes a nonlinear elliptic PDE in $h$ on $S^2$, whosecoefficients are algebraic functions of $g_{ij}$, $K_{ij}$, and theCartesian-coordinate spatial derivatives of $g_{ij}$. I discretize $S^2$ using6 angular patches (one each in the neighborhood of the $\pm x$, $\pm y$, and$\pm z$ axes) to avoid coordinate singularities, and finite difference the AHequation in the angular coordinates using 4th order finite differencing. Isolve the resulting system of nonlinear algebraic equations (for $h$ at theangular grid points) by Newton's method, using a "symbolic differentiation"technique to compute the Jacobian matrix._AHFinderDirect_ is implemented as athorn in the_Cactus_ computational toolkit, and is freely available byanonymous CVS checkout.
机译:在动态黑洞时空的3 + 1数值模拟中,找到时间演化的每个切片中的视在视界(AH)很有用。许多AH发现者可用,但它们通常要花几分钟才能完成运行,因此它们太慢而无法在每个时间步上实际使用。在这里,我介绍了一个新的AH查找器_AHFinderDirect_,它非常快速且准确:在典型的分辨率下,只需几秒钟即可在GHz级处理器上找到达到$ \ sim 10 ^ {-5} m $精度的AH。我假设要搜索的AH是相对于某些本地原点的Strahlk \“ perper(星状区域),因此对于某些单值函数$ h,通过$ r = h(angle)$来对AH形状进行参数化:S ^ 2 \ to \ Re ^ + $。然后,AHequation变成$ h $在$ S ^ 2 $上的非线性椭圆PDE,其系数是$ g_ {ij} $,$ K_ {ij} $,以及$ g_ {ij} $的笛卡尔坐标空间导数。我使用6个角度斑块(在$ \ pm x $,$ \ pm y $和$ \ pm z $附近分别一个)对$ S ^ 2 $进行离散化。轴坐标),以避免坐标奇异,并使用四阶有限差分法对角坐标中的AH方程进行有限差分。通过牛顿法,使用“符号微分”,求解非线性代数方程组(在角网格点处为$ h $)。 _AHFinderDirect_在_Cactus_计算工具箱中作为尖刺实现,并且可以通过匿名CVS结帐免费获得。

著录项

  • 作者

    Thornburg, Jonathan;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号