首页> 外文OA文献 >Auto-correlation Function Analysis of Scattered Light Intensity at Different Scattering Angles
【2h】

Auto-correlation Function Analysis of Scattered Light Intensity at Different Scattering Angles

机译:散射光强度的自相关函数分析   不同的散射角度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, the effects of the scattering angle on the nonexponentiality ofthe normalized time auto-correlation function of the scattered light intensity$g^{(2)}(\tau) $ are investigated using dilute Poly($N$-isopropylacrylamide)microgel and standard polystyrene latex samples in dispersion respectively. Theresults show that the influences of the scattering angle on the deviationbetween an exponentiality and $% g^{(2)}(\tau) $ are small. With the assistanceof the simulated data of $g^{(2)}(\tau) $, the effects of the particle sizedistribution and scattering angle on the deviation between an exponentialityand $g^{(2)}(\tau) $ are explored. The analysis reveals that thenonexponentiality of $% g^{(2)}(\tau) $ is determined by the particle sizedistribution and scattering angle. In general, the influences of the particlesize distribution are small on the nonexponentiality of $g^{(2)}(\tau) $ andvery large on the initial slope of the logarithm of $g^{(2)}(\tau) $ and theeffects of the scattering angle are determined by the particle sizedistribution and mean particle size. Under some conditions, the deviationbetween an exponentiality and $g^{(2)}(\tau) $ is greatly influenced by thescattering angle. The values of the apparent hydrodynamic radius are alsodetermined by the particle size distribution and scattering angle. The apparenthydrodynamic radius and its distribution obtained using the cumulants methodare different from the hydrodynamic radius and its distribution.
机译:在这项工作中,使用稀聚($ N $-异丙基丙烯酰胺)研究了散射角对散射光强度$ g ^ {(2)}(\ tau)$的归一化时间自相关函数的非指数性的影响。分散的微凝胶和标准聚苯乙烯胶乳样品。结果表明,散射角对指数和$%g ^ {(2)}(\ tau)$之间的偏差的影响很小。借助$ g ^ {(2)}(\ tau)$的模拟数据,粒径分布和散射角对指数和$ g ^ {(2)}(\ tau)$之间的偏差的影响为探索。分析表明,$%g ^ {(2)}(\ tau)$的非指数性是由粒径分布和散射角决定的。通常,颗粒大小分布的影响对$ g ^ {(2)}(\ tau)$的非指数性很小,而对$ g ^ {(2)}(\ tau)的对数的初始斜率的影响很大。 $和散射角的影响由粒度分布和平均粒度确定。在某些条件下,指数和$ g ^ {(2)}(\ tau)$之间的偏差受散射角的影响很大。表观流体动力学半径的值也由粒度分布和散射角确定。使用累积量法获得的表观水动力半径及其分布与水动力半径及其分布不同。

著录项

  • 作者

    Sun, Yong;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号