首页> 外文OA文献 >Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers
【2h】

Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

机译:使用对内在坐标系的配准和多个区域分类器的融合,可进行快速,准确的3D人脸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers.
机译:在本文中,我们提出了一种用于3D人脸配准到人脸固有坐标系的强大方法。固有坐标系由穿过鼻子,鼻子的尖端和鼻子的鼻梁的倾斜度的垂直对称平面定义。此外,我们提出了一种基于3D人脸分类器的融合方法,该方法基于多个相关区域分类器对重叠人脸区域的融合。区域分类器使用PCA-LDA进行特征提取,并将似然比用作匹配分数。融合是通过对识别场景使用直接多数投票实现的。为了进行验证,还使用了投票方法,并且通过将投票数与阈值进行比较来定义决策。使用建议的配准方法,结合由60个融合区域分类器组成的分类器,我们在FRGC v2数据的全部与首次鉴定测试中获得了99.0%的鉴定率。使用120个区域分类器对FRGC v2数据进行的所有验证测试与全部验证测试,在FAR = 0.1%时,验证率为94.6%。在这些测试中,第一个是报告的最高性能,第二个是性能最佳的系统的前五名。此外,我们的方法比其他方法快得多,每个图像仅需要2.5秒的配准时间,而每次比较只需不到0.1毫秒的时间。由于我们使用PCA和LDA进行特征提取,因此生成的模板大小也非常小:对于60个区域分类器为6 kB。

著录项

  • 作者

    Spreeuwers, Lieuwe Jan;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 und
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号