In this paper, we construct and classify minimal surfaces foliated byhorizontal constant curvature curves in product manifolds $M \times \R$, where$M$ is the hyperbolic plane, the Euclidean plane or the two dimensional sphere.The main tool is the existence of a Jacobi field which characterize theproperty to be foliated in circles and geodesics in these product manifolds. Itis related to harmonic maps.
展开▼
机译:在本文中,我们构造和分类了由产品流形$ M \ times \ R $中水平恒定曲率曲线形成的最小曲面,其中$ M $是双曲平面,欧几里德平面或二维球面,主要工具是存在性Jacobi场的特征,其特征是在这些产品流形中以圆和测地线叶的属性。它与谐波图有关。
展开▼