首页> 外文OA文献 >Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: implications for large scale estimates of CO2 evasion
【2h】

Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: implications for large scale estimates of CO2 evasion

机译:北流中气体传递系数(KCO2)的时空变化:对大规模二氧化碳逃逸估算的影响

摘要

Boreal streams represent potentially important conduits for the exchange of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere. The gas transfer coefficient of CO2 (KCO2) is a key variable in estimating this source strength, but the scarcity of measured values in lotic systems creates a risk of incorrect flux estimates evenudwhen stream gas concentrations are well known. This study used 114 independent measurements of KCO2 from 14 stream reaches in a boreal headwater system to determine and predict spatiotemporal variability in KCO2. The KCO2 values ranged from 0.001 to 0.207 min−1 across the 14 sites. Median KCO2 for a specific site was positively correlatedudwith the slope of the stream reach, with higher gas transfer coefficients occurring in steeper stream sections. Combining slope with a width/depth index of the stream reachudexplained 83% of the spatial variability in KCO2. Temporal variability was more difficult to predict and was strongly site specific. Variation in KCO2, rather than pCO2, was theudmain determinant of stream CO2 evasion. Applying published generalized gas transfer velocities produced an error of up to 100% in median instantaneous evasion rates compared to the use of actual measured KCO2 values from our field study. Using the significant relationship to local slope, the median KCO2 was predicted for 300,000 km of watercourses (ranging in stream order 1–4) in the forested landscape of boreal/nemoral Sweden. The range in modeled stream order specific median KCO2 was 0.017–0.028 min−1udand there was a clear gradient of increasing KCO2 with lower stream order. We conclude that accurate regional scale estimates of CO2 evasion fluxes from running waters are possible, but require a good understanding of gas exchange at the water surface.
机译:北方流代表着潜在的重要管道,用于陆地生态系统和大气之间的二氧化碳交换。 CO 2的气体传输系数(KCO 2)是估算该气源强度的关键变量,但是即使在已知气流浓度的情况下,乳液系统中测量值的稀缺性也会造成流量估算不正确的风险。这项研究使用了114个独立测量来测量北方源水系统中14条河段的KCO2,以确定和预测KCO2的时空变化。在这14个站点中,KCO2值的范围从0.001到0.207 min-1。特定位置的中位数KCO2与河段的斜率呈正相关,在较陡的河段中会出现较高的气体转移系数。将坡度与河流的宽度/深度指数相结合,可以得出KCO2空间变异的83%。时间变异性更难以预测,并且具有特定的地点特异性。 KCO2而非pCO2的变化是物流CO2逃逸的主要决定因素。与使用来自我们现场研究的实际测量的KCO2值相比,应用已发布的广义气体传输速度产生的中值瞬时逃逸率高达100%的误差。利用与当地坡度的显着关系,预测了瑞典北部/北部森林的森林景观中300,000公里水道的平均KCO2(以1-4的水位排列)。模拟的河床阶数比中值KCO2的范围为0.017–0.028 min-1 ud,并且随着河床阶数的降低,存在明显的KCO2上升梯度。我们得出的结论是,可以对自来水产生的CO2逃逸通量进行准确的区域规模估算,但需要对水面的气体交换有很好的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号