首页> 外文OA文献 >Modulation of contact resonance frequency in friction force microscopy on the atomic scale
【2h】

Modulation of contact resonance frequency in friction force microscopy on the atomic scale

机译:摩擦力显微镜中接触频率的调制在原子尺度上

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Friction is one of the physical phenomena, which maybe is one of the greatest challenges to theudscientic and industrial communities and has a direct linkage to energy eciency and environmentaludcleanliness of all moving mechanical systems. In everyday life, one rarely thinks about friction orudappreciates its importance, but there is no doubt that it is a major cause of energy loss. Hence,udthe prospect of further understanding and reducing friction in engineering systems has real-life andudeconomic implications for not only preserving our limited energy resources, but also in saving ourudplanet from hazardous emissions for generations to come.udOn the macroscopic scale, the da Vinci-Amonton laws are common knowledge (1. friction isudindependent of the apparent contact area, 2. friction is proportional to the normal load and 3. fric-udtion is independent of velocity). With the invention of the Atomic Force Microscope in 1986, audmodern eld of tribology developed which made it possible to investigate friction on the micro-udscopic scale. Experiments with small contacts have shown that the abovementioned empirical lawsudare not always correct. Reasons may be related to a larger surface-to-volume ratio and the greaterudimportance of adhesion, surface chemistry and surface structure. By these means, a better under-udstanding of the phenomenon of friction is required, to learn how to quantify and eventually how toudcontrol friction.udThe central topic of this thesis concerns friction on the atomic scale. With the Friction ForceudMicroscope, that is operated in ultra high vacuum and at room temperature, the friction of audsingle asperity contact between a sharp probing tip and a udat surface has been investigated. Thisudis in contrast to the friction between two bodies on the macroscopic scale, where the contact isudformed by a multitude of asperities. This single asperity is dragged over the surface by a support.udWhile the support is moving with constant velocity, the tip apex itself typically exhibits a stick-slipudmotion, where the tip periodically sticks in a potential well, until the pulling force is high enoughudto overcome the static force and to induce a slip event, where the tip jumps into an adjacentudpotential well. The stick-slip process has been studied and analysed profoundly by experimentsudand numerical calculations by means of the tip motion on the surface lattice, also with respect of the limit cases of the superlubricity regimes.udThe inuduence of the applied load on the stick-slip motion was experimentally and numericallyudinvestigated and indicates that the friction force is decreasing when reducing the load, until the loadudreaches a critical threshold, below which the system enters the superlubricity regime. Numerical calculations indicate that a reduction in load enlarges the stability regions, where the tip apexudposition is in a potential well, and thus facilitates the tip to follow a trajectory with lower energyudbarriers.udThe eect of mechanical actuation of the cantilever on friction has also been analysed experimen-udtally and numerically. Numerical model calculations have been performed in two dimensions basedudon an integrator solving the Newton equation of motion. For the actuation in normal direction, theudstability regions are shown to periodically expand and contract, and similar to a decreasing loadudallows the tip trajectory to explore regions on the potential energy surface with lower energy barri-uders. Mechanical actuation of the cantilever in normal direction was already shown experimentallyudby others to reduce the friction, an actuation of the torsional vibration mode is now demonstratedudto also reduce the friction force.udThe inuduence of the temperature on the stick-slip motion is investigated numerically by im-udplementing Brownian motion of the tip apex, and indicates that the thermal noise allows the tipudapex to overcome an energy barrier on the potential energy surface slightly earlier compared toudthe case at zero temperature and thus reduces the friction force. An increasing temperature isudshown to decrease friction until a critical temperature is reached, above which the system entersudthe superlubricity regime, similar to the load and actuation dependence of friction.udThe tip trajectory has been analysed in detail by numerical and analytical calculations withudsubject to the scan direction and oset, which allows to describe and quantify the angular de-udpendence of static and kinetic friction for square and hexagonal lattice symmetries. Since the tipudtrajectory is not directly accessible in experiments, a method has been introduced which combinesudthe horizontal and vertical deudections to determine the tip path also in experiments. Hence, severaludaspects of the stick-slip process were analysed thoroughly, which give new insight and an improvedudunderstanding of the friction on the atomic scale.udThe second important topic of the thesis concerns resonance frequencies of a cantilever inudcontact. The contact resonance frequency depends on several parameters such as load, contactudarea, material properties of the tip apex and sample material, and can be measured and tracked in the experiment. The rst mode of the normal and torsional contact resonance frequencies indicateuda maximum when the contact is not stressed in the lateral direction. The contact resonanceudfrequencies are decreasing shortly before a slip event, around which the contact resonances drop toudits initial values, but can not be accurately followed, owing to the nite phase locked loop responseudtime. Thus, the contact resonances may be used as an indicator of a forthcoming slip event.udSuch a behaviour might also be relevant for macro-slip events, such as earthquakes, where early warning systems are still missing. The contact resonance technique also appears to be sensitiveudto atomic defects. Atomic defects are detected for the normal and torsional modes, which are notudclearly detected in the lateral force or in the vertical deudection channels. Additional excitationudof the sliding system at the contact resonance reduces the friction and gives further informationsudabout the mechanical properties of the asperity contact and the sample material. Since the contactudresonance frequency of the normal and torsional mode oscillations are tracked simultaneously toudthe lateral force, a contact resonance map is generated in addition to the friction force map, whichudis presented on the atomic scale for the rst time.udIn summary, several aspects of friction, especially the stick-slip process, and contact dynamics,udincluding the contact resonance frequencies, have been thoroughly investigated on the atomic scale.
机译:摩擦是物理现象之一,可能是对科学界和工业界的最大挑战之一,并且与所有移动机械系统的能源效率和环境清洁度直接相关。在日常生活中,很少有人会想到摩擦或不理解摩擦的重要性,但是毫无疑问,摩擦是造成能量损失的主要原因。因此,进一步了解和减少工程系统中的摩擦的前景不仅对保存我们有限的能源资源,而且还可以为下一代保护地球免于有害排放,具有现实和经济意义。达芬奇-阿蒙顿定律是常识(1.摩擦力与视在接触面积无关; 2。摩擦力与法向载荷成比例; 3。摩擦力与速度无关)。随着1986年原子力显微镜的发明,现代摩擦学领域的发展使人们有可能在微观/显微镜范围内研究摩擦。小接触的实验表明,上述经验定律并非总是正确的。原因可能与更大的表面体积比和更大的附着力,表面化学性质和表面结构有关。通过这些方法,需要更好地理解摩擦现象,以学习如何量化并最终如何控制摩擦。 ud本论文的主要主题涉及原子级摩擦。使用在超高真空和室温下运行的摩擦力 ud显微镜,研究了尖锐的探针尖端与 udat表面之间的 a粗糙接触的摩擦。这与宏观尺度上的两个物体之间的摩擦形成对比,在宏观尺度上,接触是由许多粗糙表面变形的。这个单一的凹凸被支撑物拖曳在表面上。 ud虽然支撑物以恒定的速度移动,但尖端顶点本身通常会出现粘滑现象 udmotion,其中尖端会定期粘在势阱中,直到拉力达到足够高的 ud以克服静力并引发滑动事件,此时尖端跳入相邻的 upotential井中。借助于表面晶格上的尖端运动,通过实验 udand数值计算,还针对超润滑状态的极限情况,对粘滑过程进行了深入的研究和分析。 ud施加载荷对载荷的影响对粘滑运动进行了实验和数值研究,结果表明,当降低载荷时,摩擦力在减小,直到载荷达到临界阈值为止,低于该阈值,系统进入超润滑状态。数值计算表明,载荷的减小扩大了尖端区域顶点处的叠加作用的稳定区域,从而有利于尖端沿着能量较低的障碍物的轨迹运动。摩擦也已通过实验和数值分析。在求解牛顿运动方程的积分器的基础上,已经在二维中进行了数值模型计算。对于法线方向的驱动, //////////////////////////////////////////////////////////////////////////////////////////////////////均均均将各自中。已经通过实验证明了悬臂在垂直方向上的机械致动,以降低摩擦,现在已经证明了扭转振动模式的致动,这也减小了摩擦力。通过对尖端的布朗运动进行补偿来对滑移进行数值研究,结果表明,与零温度下的情况相比,热噪声使尖端可以克服势能表面上的能垒。降低摩擦力。升高温度可以减小摩擦,直到达到临界温度为止,在该温度以上,系统进入超润滑状态,类似于摩擦的载荷和驱动依赖性。 ud已通过数值和分析计算对尖端轨迹进行了详细分析。取决于扫描方向和偏移,这允许描述和量化正方形和六边形晶格对称性的静摩擦和动摩擦的角度依赖性。由于尖端弹道在实验中不能直接访问,因此引入了一种方法,该方法结合了水平和垂直方向的确定来在实验中确定尖端路径。因此,彻底分析了粘滑过程的几个方面,这为原子尺度上的摩擦提供了新的见识和改进的理解。 ud论文的第二个重要主题是悬臂内接触的共振频率。接触共振频率取决于几个参数,例如负载,接触 U,尖端的材料特性和样品材料,并且可以在实验中进行测量和跟踪。当在横向方向上未施加压力时,法向和扭转接触共振频率的第一个模式表示最大值。在滑移事件之前不久,接触共振频率减小,在该滑动事件附近,接触共振频率降至初始值,但由于有限的锁相环响应时间而不能精确地跟踪。因此,接触共振可以用作即将到来的滑动事件的指示。 ud这种行为也可能与宏观滑动事件(例如地震)有关,而宏观滑动事件仍然缺少预警系统。接触共振技术似乎对原子缺陷也很敏感。对于正常模式和扭转模式,检测到原子缺陷,在横向力或垂直偏转通道中无法清晰地检测到原子缺陷。滑动系统在接触共振处的额外激励会降低摩擦,并提供有关凹凸接触和样品材料的机械性能的更多信息。由于法向和扭转振动的接触/共振频率是同时跟踪到横向力的,因此除了摩擦力图以外,还会生成接触共振图,这是第一次在原子尺度上显示。 ud总而言之,已经在原子尺度上彻底研究了摩擦的几个方面,尤其是粘滑过程和接触动力学,包括接触共振频率。

著录项

  • 作者

    Steiner Pascal;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号