首页> 外文OA文献 >Surface characterization of amorphous hydrogenated carbon thin films containing nanoclusters of noble metals
【2h】

Surface characterization of amorphous hydrogenated carbon thin films containing nanoclusters of noble metals

机译:含有贵金属纳米团簇的无定形氢化碳薄膜的表面表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work nanocomposite thin films of amorphous hydrogenated carbonud(a-C:H) doped with noble transition metals of 1B group (gold, silver, and copper) areudstudied. The composite materials are obtained by combined magnetron sputteringud(MS) of a metal target by argon, and plasma-assisted chemical vapor depositionud(PACVD) of methane under vacuum conditions. Particular attention is devoted to theudlow metal-content a-C:H samples, in which metallic inclusions have a form of isolatedudnanoclusters. Our aim was to reveal surface cluster arrangement, i.e. to figure outudwhether topmost metallic nanoclusters are covered with a layer of a-C:H or are baldudon the surface and hence exposed to the surrounding environment. We depositedudour samples onto substrates kept on the ground potential and on �150 V dc biasudvoltage. The differences encountered in the surface structure and nanocluster arrangementudbetween samples, which differed in the deposition process in this parameterudonly, provided an answer to the question of surface clusters coverage.udThe experimental techniques used to reach this goal comprised in vacuo andudex vacuo photoelectron spectroscopy (PES), direct imaging by atomic force microscopyud(AFM) and scanning electron microscopy (SEM), and grazing incidence smallangleudx-ray scattering (GISAXS). The majority of work is made in several photoemissionudexperiments, using both x-ray and UV-excited photoelectron spectroscopy (XPSudand UPS, respectively). In the course of the work, series of (grounded only) a-C:H/Au, a-C:H/Ag, anduda-C:H/Cu samples, with metallic content varying from zero to 100 at.%, have beenuddeposited and studied in vacuo by XPS and UPS (Section 3.1). The XPS results ofudthese series show that, with decreasing metal content below the percolation thresholdud(at about 40-50 at.% of metal concentration), a shift in binding energy (BE) ofudmetal core levels towards higher BEs is observed. With non-carbidic metals like theudones we used in our work, these shifts can be related to their isolated cluster structureudin the host matrix. Decrease of the total metal content in the sample is followedudby the decrease in the cluster size, which is reflected in increased binding energy ofudelectrons escaping from them (Paragraph 2.2.2 and Section 3.1). At the same time,udcarbon C 1s core level is shifted in the opposite direction, towards lower binding energies,udand this shift rises as metal content increases in the sample. Negative shift inudC 1s binding energy reveals increased relative content of sp2-coordinated carbon inudthe a-C:H matrix, which, we believe, should be attributed to the compressive stressudthat metallic inclusions introduce in the host a-C:H, being higher with higher metaludcontent in the sample. Another possible reason is catalytic reduction of hydrogen inudthe a-C:H matrix with increasing metallic content. UPS of the same series (Fig. 3.2)udshowed increased relative contribution of metal valence band features with increasedudmetal content. The Fermi edge evolution from monocrystalline metal reference samplesudto low metal-content a-C:H showed both decrease in the density of states near the Fermi level and its shift to the higher BEs, related to the cluster structure of metallicudinclusions and to the same direction-shifts in metal core levels.udOur further attention was focused on low metal-content a-C:H that is, typicallyudbelow 10 at.%, and to the differences between grounded and biased samples. Theudreprint of the communication on these effects encountered in a-C:H/Au and publishedudin the Applied Physics Letters (Vol. 80, 2002, p.2863) is given in Section 3.2.udDirect imaging techniques (Sections 3.2 and 3.3) reveal that even smalludamount of metal included in the a-C:H significantly changes the surface morphologyudand increases roughness. For all three nanocomposite materials, biased samplesudshow similar surface morphology, characterized by relatively flat basis and isolatedudbump structures, of about 30 nm in diameter and up to 15 nm in height. Theseudstructures are attributed to the altered morphology of a-C:H component of a nanocomposite,udwith metallic clusters concentrated on them. Grounded samples characterizeudlow roughness in a-C:H/Au and increased in a-C:H/Ag and a-C:H/Cu. The increaseudof roughness in the latter two materials is explained by enhanced surface diffusionudof metal atoms and clusters coalescence into bigger islands.udGISAXS patterns (Section 3.4) showed isotropic cluster size and interclusteruddistance distribution in grounded a-C:H/Au and a-C:H/Cu samples. With grounded a-udC:H/Ag sample, no spatial correlation could be revealed, probably again due to theudsurface agglomeration of Ag clusters. These analysis of GISAXS patterns showedudthat biased samples contain bigger clusters than grounded ones, and slightly flattenedudin the grow direction. The differences between grounded and biased samples were first detected byudin vacuo XPS of a-C:H/Au in systematically lower, in average about 50%, Au contentudin the biased than in the grounded case. This decrease is followed by higher positiveudshift of the Au 4f7/2 core level binding energy in the biased case (Section 3.2 andudParagraph 3.5.1). The similar situation was encountered in a-C:H/Ag samples, whileuda-C:H/Cu showed higher Cu content in the biased than in the grounded case and nouddifference in Cu 2p3/2 shifts from the reference BE. The decrease of the total metaludcontent in biased a-C:H/Au and a-C:H/Ag samples most probably results from increaseduddistance among surface clusters and their concentration on isolated bumpudstructures. The reason for the increased BE shift of Au 4f7/2 and Ag 3d5/2 core levelsudin the biased samples should be searched in cluster baldness at the sample surface.udThe violation of both above conclusions in a-C:H/Cu, i.e. higher Cu content in theudbiased sample and equal shift of the Cu 2p3/2 core level in grounded and biasedudsample is probably due to high relative increase of copper cluster size upon biasing,udwhich compensates the effect of their baldness at the surface. The topmost clustersudof grounded nanocomposite samples are, therefore, most probably covered with audlayer of a-C:H. The thickness of this layer must be below escape depth of metaloriginatedudphotoelectrons, i.e. less than about 2 nm. The negative shift of the C 1sudcore level in the biased samples is induced by increased sp2/sp3 coordinated carbonudratio due to the sample bombardment by Ar+ ions during the deposition process. To our belief, the same effect is responsible for surface metallic clusters baldness in theudbiased samples.udThese conclusions are supported by several following PES experiments, otherudthan XPS of as-deposited samples. First of them was in vacuo UPS of as-depositedudsamples. In the grounded samples, the He I spectra mostly reproduce the characteristicudshape of a-C:H valence band, and only higher sensitivity He II UPS reveal theudpresence of metallic inclusions. Upon biasing, even when total measured metal contentudwas lower than in the grounded case (a-C:H/Au and a-C:H/Ag), all spectraudclearly showed increased metallic features, evidencing on higher metal exposure atudthe surface.udXPS at off-normal take-off angle of escaping electrons also confirmed our conclusionsudon the surface clusters coverage. Increasing the tilting angle of a sample,udmeasured intensity ratio of a metal core level to appropriate C 1s showed in mostudgrounded samples monotonous decrease, and regular and steady increase in theudbiased ones. These results support our conclusion on the surface clusters coverageudin grounded samples and their baldness in the biased ones. The higher metalcontentudgrounded samples of a-C:H/Ag, however, did not show the expected decreaseudin the intensity ratio, and that was the first indication that the effect of coverageudmay be a particularity of small clusters only, i.e. low-metal content groundedudsamples. This suspicious is confirmed in the next test experiment that we have undertaken,udby subsequent in situ low-energy Ar+ ion etching and PES analysis of a sample.udThe same metal to carbon core level intensity ratio curves were measuredudagainst the sputtering time. In the grounded samples, at the beginning of the sputtering,udan increase in the intensity ratio is observed, related to the thinning of the topuda-C:H layer. In most cases, after some time of sputtering, the maximum is reachedudrelated to the total removal of the cover layer, and from that point onwards, Ar+ ionudetching erodes the metallic clusters as well. In biased samples, a monotonous decreaseudof intensity ratio curves was observed throughout the experiment and isudclearly related to the bald surface clusters that are sputtered together with the a-C:Hudmatrix. The grounded samples intensity ratio curves showed one more importantudregularity: in higher metal-content samples the maximum is reached after shorterudtime, i.e. these samples need less time to be fully uncovered. As a special case, a-udC:H/Ag 32.3 at.% did not show any increase in the intensity ratio curve, but monotonousuddecrease throughout the measurement. That encouraged the conclusion thatudthe coverage of the topmost metallic clusters of grounded samples with a-C:H is anudeffect that is characteristics of small clusters in the host matrix, i.e. low metal-contentudsamples. With higher metal contents, there is no observable difference betweenudgrounded and biased samples regarding surface clusters coverage.udApart from the core level intensity ratio curves, the evolution of our samplesudwith in situ Ar+ ion etching is described in XPS and UPS spectra recorded at eachudpoint of the sputtering time scale. Metal core levels in these figures remained eitherudunchanged or are slightly shifted towards higher binding energies. In the grounded samples, this is related to the thinning of the cover layer, and in the biased ones toudthe decrease of the cluster size by Ar+ ion sputtering. Carbon C 1s core level in alludsamples shows shift with sputtering time towards lower binding energies, which isudrelated to the further sp2-coordinated carbon favoring by the in situ Ar+ ion bombardment.udThe UPS spectra evolution generally follows the trend described by core leveludintensity ratio curves. That is, in grounded samples, the metal features in valenceudband spectra rise to the point of total removal of the cover layer, and decrease furtherudto the end of the sputtering experiment. Biased samples, on the other hand, showudcontinuous decrease of the metal features. In both grounded and biased valenceudband spectra, the development of the carbon π-states is observed throughout theudexperiment, evidencing on the increase of sp2-coordinated carbon content with sputteringudtime. udPointed out several times, the Ag surface clusters coalescence is confirmed inudexperiment in which we compared XPS and UPS spectra of as-deposited samples,udafter 20 hours residence in the ultra-high vacuum (UHV) conditions and after additionalud20 hours in the air. Generally, all as-deposited spectra and after 20 hours in theudUHV were almost identical. After exposure to the air, in all samples carbon C 1s coreudlevel is shifted towards lower binding energies. The most interesting differences afterudresidence in the air show metal core levels. The Au 4f7/2 core level remained practicallyudidentical to the one measured in the UHV, revealing that air conditions do notudaffect Au clusters, and that their size and arrangement remain fully determined by theuddeposition process. That is not the case, however, with Ag clusters. The Ag 3d5/2udcore levels of both grounded and biased a-C:H/Ag samples shift towards lower bindingudenergies. From the differences in UHV- and air-residence binding energy positionsudof the Ag 3d5/2, it is estimated that the increase factor of cluster volume inudgrounded samples is about 170, and the one of biased samples clusters � about 12.udIn these rough figures one may find the cause of the specific behavior of theuda-C:H/Ag sample that we encountered in several occasions and assigned to the Agudsurface clusters coalescence: roughness revealed by AFM, lack of correlation in theudGISAXS patterns, pronounced Ag 4d features even in low metal content valenceudband spectra, and negative shift of the Ag 3d5/2 in the Ar+ ion in situ in-depth profiling.udThe last of our nanocomposites subjected to UHV- and air-dwell comparison was a-udC:H/Cu. Copper, however, oxidizes in the air, but nevertheless it provided in this experimentudone of most elegant evidences on the surface clusters coverage. The deconvolutionudprocedure applied to copper- and CuO-originated Cu 2p3/2 revealed thatudrelative content of oxidized copper is higher on the surface of biased sample (withudbald surface clusters), than on the grounded one (where surface clusters are coveredudby a-C:H). The last in the series of experiments aimed to check our conclusions on theudsurface clusters coverage was based on the prospective sulfur binding to noble metaludatoms. Our samples, together with appropriate monocrystalline reference samples,udwere covered with a layer of liquid thiophene (C4H4S) and, after evaporation, subjectedudagain to the XPS analysis. The total amount of adsorbed sulfur was generally low, about 5 at.% or less. That results in noisy XPS spectra of the S 2p core levelsudregion, in spite of increased measurement statistics. The S 2p spectra adsorbed onudthe reference samples were fitted with three S 2p1/2 � S 2p3/2 doublets assigned to Sudbonds to a noble metal, S in C4H4S, and to S�O bonds (Figs. 3.32-3.34). Intercomparisonudof our nanocomposite samples with reference ones showed that sulfur adsorbedudon surfaces originates predominantly from C4H4S itself. However, in biasedudcases a higher relative contribution of the shoulder related to sulfur bonds to a nobleudmetal is observed in spectra, evidencing on higher metal exposure at the biasedudsamples surfaces. The exception of a-C:H/Cu is due to the oxidation of copper.udIn conclusion, in several different PES experiments, by direct imaging of samples,udand using GISAXS technique, we have revealed that MS/PACVD-obtained lowudnoble metal-content amorphous hydrogenated carbon nanocomposites are characterizedudwith topmost metallic clusters covered with a tiny layer of a-C:H when depositedudon a grounded substrate, and bald surface clusters when substrate is biased withud�150 V dc. Beside this main result, we encountered few other effects, like e.g. increasedudsp2/sp3 coordinated carbon ratio in the a-C:H matrix in the biased samplesudand surface clusters coalescence in a-C:H/Ag (and to some extent in a-C:H/Cu)udnanocomposites. By changing one parameter only � the substrate bias voltage in deposition ofudour grounded and biased �counterparts�, we have shown that surface clusters coverageudeffect has an origin in the plasma deposition process itself. We believe that oneudshould look for its cause in the plasma afterglow, the state established in the ionizedudgas immediately after switching off the plasma power supply.udFrom the applicative point of view, we have described, in principle, the mechanismudthat may be employed to tailor the coverage of topmost metallic clusters embeddedudin the a-C:H matrix. Metal inclusions in the a-C:H showed to improve theudwear resistance of the coatings, so one can also envisage the applications when theudcoverage of surface metal clusters with a-C:H would be useful. In tribology, theseudwould be cases when incorporated metal reduces the lubricating properties, i.e. increasesudthe friction coefficient. In biocompatible materials the same would be necessaryudwhen incorporated metals are toxic, like e.g. silver or copper. Vice versa, oneudmay also envisage applications when topmost cluster baldness would be desirable,udlike e.g. with low-friction MoS2 and WS2 inclusions in a-C:H for tribological purposes.udIn addition, surface clusters exposure to the surrounding environment probably influencesudthe optical and aging properties of solar selective coatings based on metal- orudmetal carbide-containing amorphous hydrogenated carbon nanocomposites.
机译:在这项工作中,研究了掺有1B类贵金属过渡金属(金,银和铜)的非晶氢化碳 ud(a-C:H)纳米复合薄膜。通过在氩气条件下通过磁控管溅射金属靶材/氩气和甲烷的等离子体辅助化学气相沉积/ ud(PACVD)来获得复合材料。特别注意金属含量低的a-C:H样品,其中金属夹杂物具有分离的 udclusters形式。我们的目的是揭示表面簇的排列,即找出最顶部的金属纳米簇是否被a-C:H层覆盖或秃顶在表面上,从而暴露于周围环境中。我们将样品 udour沉积在保持接地电位和150 V dc偏压 udvoltage的基板上。样品之间的表面结构和纳米簇排列的差异在该参数的沉积过程中有所不同 udonly,提供了对表面簇覆盖率问题的解答。 ud用于实现该目标的实验技术包括真空和 udex真空光电子能谱(PES),原子力显微镜(udm)和扫描电子显微镜(SEM)的直接成像,以及掠入射小角 udx射线散射(GISAXS)。大部分工作是在几个光发射实验中完成的,同时使用X射线和UV激发光电子能谱(分别为XPS ud和UPS)。在工作过程中,已经对一系列(仅接地的)aC:H / Au,aC:H / Ag和 uda-C:H / Cu样品进行了测试,金属含量从零到100 at。%不等。 由XPS和UPS真空沉积并研究(第3.1节)。这些系列的XPS结果表明,当金属含量降低到渗滤阈值以下(金属浓度的40%至50%)时,金属内核水平的结合能(BE)向较高的BE转移。被观察到。对于我们在工作中使用的非碳化物金属 udones,这些变化可能与它们在基质中的孤立簇结构有关。样品中总金属含量的减少随后是簇尺寸的减小,这反映在逸出的电子的结合能增加(第2.2.2节和第3.1节)。同时, udcarbon C 1s的核心能级朝相反的方向移动,朝着更低的结合能移动, ud,并且随着样品中金属含量的增加,这种移动增加。 udC 1s结合能的负位移表明,在aC:H基质中,sp2配位碳的相对含量增加,我们认为这应归因于金属夹杂物在主体aC:H中引入的压应力更高,样品中的金属杂质含量更高。另一个可能的原因是随着金属含量的增加,α-C:H基质中的氢被催化还原。同一系列的UPS(图3.2) ud显示,金属价带特征的相对贡献随 udmetal含量的增加而增加。从单晶金属参考样品 ud到低金属含量aC:H的费米边沿演变表明,费米能级附近的态密度降低,并且向高BE转移,这与金属非金属夹杂物的簇结构以及与 ud我们的进一步关注集中在低金属含量的aC:H(通常小于10 at。%)以及接地样品和偏置样品之间的差异上。有关在aC:H / Au中遇到的这些影响并在《应用物理快报》(80卷,2002年,第2863页)中发表的 ud有关这些影响的通讯的重印在第3.2节中给出。 ud直接成像技术(第3.2和3.3节) )表明,即使在aC:H中包含少量甚至少量的金属,也会显着改变表面形态 udand增加粗糙度。对于所有三种纳米复合材料,有偏斜的样品都表现出相似的表面形态,其特征是相对平坦的基础和孤立的凸点结构,直径约为30 nm,高度最高为15 nm。这些 udstructures归因于纳米复合材料的a-C:H组分形态的改变, ud带有集中在其上的金属簇。磨碎的样品的粗糙度在a-C:H / Au中较低,而在a-C:H / Ag和a-C:H / Cu中则增加。后两种材料粗糙度的增加 udof可以通过提高表面扩散 udof金属原子和簇聚结到更大的岛来解释。 udGISAXS模式(第3.4节)显示了各向同性的簇大小和接地的aC:H / Au的簇间 uddist分布和aC:H / Cu样品。对于接地的a udC:H / Ag样品,可能没有发现空间相关性,这可能又是由于Ag团簇的表面聚集。对GISAXS模式的这些分析表明 ud,有偏的样本包含比接地样本更大的聚类。,并且在生长方向上略微变平。首先,通过α-C:H / Au的真空XPS检测接地样品和带偏斜样品之间的差异,系统偏置样品中的Au含量平均比接地样品更低,平均约为50%。在有偏斜的情况下,此降低之后是Au 4f7 / 2核能级结合能的较高正位移(第3.2节和第3.5.1节)。在a-C:H / Ag样品中也遇到了类似的情况,而 uda-C:H / Cu则在偏斜的情况下比在接地情况下显示更高的Cu含量,并且Cu 2p3 / 2与参考BE的偏移没有差异。偏置的a-C:H / Au和a-C:H / Ag样品中的总金属 ud含量的降低最可能是由于表面簇之间的 uddist增加以及它们在孤立的凸块 ud结构上的集中所致。 Au 4f7 / 2和Ag 3d5 / 2核心能级的BE位移增加的原因有偏差的样品中,应在样品表面的簇状秃头中搜索。 ud在aC:H / Cu中违反以上两个结论,即偏斜样品中较高的铜含量和接地偏斜样品中的Cu 2p3 / 2芯能级均等偏移可能是由于偏斜时铜簇尺寸的相对增加较大,从而补偿了表面上光头的影响。因此,接地纳米复合材料样品的最高簇 udud最可能覆盖有a-C:H的 udlayer。该层的厚度必须低于金属起源的双光电子的逸出深度,即小于约2nm。由于在沉积过程中样品受到Ar +离子的轰击,sp2 / sp3配位碳比增加,导致偏置样品中C 1s udcore水平的负位移引起。我们相信,同样的效应是造成 udbiad样品中表面金属团簇秃头的原因。 ud这些结论得到以下几个PES实验的支持,除了沉积样品的XPS以外。首先是在真空中沉积的 udsamples UPS。在接地的样品中,He I谱大部分再现了a-C:H价带的特征形状,只有更高灵敏度的He II UPS才显示出金属夹杂物的存在。偏置后,即使总测得的金属含量低于接地情况(aC:H / Au和aC:H / Ag),所有光谱仍清楚地显示出金属特征的增加,这表明表面的金属暴露量更高。在逃逸电子偏离法线起飞角的情况下,udPPS也证实了我们的结论。增加样品的倾斜角度,测得的大多数样品中金属芯能级与适当C 1s的强度比单调减少,而偏斜的样品则有规律而稳定地增加。这些结果支持了我们对表面簇覆盖度/杜丁接地样品及其在有偏斜样品上的秃顶的结论。然而,较高的金属含量未研磨的aC:H / Ag样品并未显示出预期的强度降低 udin,这是第一个迹象表明覆盖率的影响 ud可能只是小簇的特殊性,即低-金属含量接地 udsamples。在接下来的测试实验中证实了这种可疑性, ud随后进行了原位低能Ar +离子刻蚀和样品的PES分析。 。在接地的样品中,在溅射开始时,观察到强度比增大,与顶层C:H层变薄有关。在大多数情况下,经过一段时间的溅射后,达到的最大值与覆盖层的总去除量有关,从那时起,Ar +离子的浸蚀也会腐蚀金属团簇。在有偏差的样品中,整个实验过程中观察到强度强度曲线的单调降低,并且与与a-C:H udmatrix一起溅射的光秃表面簇明显相关。接地的样品强度比曲线显示出一个更重要的不规则性:在较高金属含量的样品中,在较短的 udtime之后达到最大值,即这些样品需要更少的时间才能完全被发现。作为特例,a- udC:H / Ag 32.3 at。%的强度比曲线没有增加,但在整个测量过程中单调/减少。这鼓励了这样的结论,即用a-C:H覆盖接地样品的最顶部金属簇是一个影响,即主体基质中小簇的特征,即低金属含量的样品。金属含量较高时,在磨碎的和有偏差的样本之间,关于表面簇的覆盖率没有明显差异。 ud除了核心能级强度比曲线,在XPS和UPS光谱中,在溅射时间标尺的每个 udpoint记录下,对样品进行原位Ar +离子蚀刻的过程进行了描述。这些数字中的金属核水平保持不变或朝着更高的结合能略微转移。在接地的样品中,这与覆盖层的变薄有关,而在偏置的样品中,这与通过Ar +离子溅射减小簇尺寸有关。在所有样品中,碳C 1s的核心水平都随着溅射时间的变化而朝着更低的结合能移动,这与原位Ar +离子轰击进一步使sp2配位的碳偏爱有关。核心水平强度比曲线。也就是说,在接地的样品中,价态 udband光谱中的金属特征会上升到覆盖层完全被去除的程度,并且在溅射实验结束之前会进一步降低。另一方面,有偏斜的样品显示连续减少了金属特征。在接地价态和偏置价态 udband光谱中,在整个 ud实验中都观察到碳π态的发展,证明了sp2配位的碳含量随溅射 udtime的增加而增加。 ud指出了几次,在 ud实验中证实了Ag表面簇的聚结,其中我们比较了所沉积样品的XPS和UPS光谱,在超高真空(UHV)条件下停留了20小时后,以及经过额外的 ud20后,数小时。通常,所有沉积的光谱和20 h后在udUHV中的光谱几乎相同。暴露在空气中后,所有样品中的碳C 1s核心/ udlevel都朝着较低的结合能移动。空气中出没后最有趣的差异是金属芯水平。 Au 4f7 / 2的核心水平实际上与在特高压中测得的核心水平完全不同,这表明空气条件不会影响Au团簇,并且其大小和排列仍完全由沉积过程决定。但是,对于Ag簇,情况并非如此。接地的和偏置的a-C:H / Ag样品的Ag 3d5 / 2 udcore水平朝着更低的结合 udergy方向移动。根据Ag 3d5 / 2的UHV和空气驻留结合能位置 ud的差异,可以估算出接地样品中簇体积的增加因子约为170,而一个偏向的样品簇中的簇因子的增加因子约为12。在这些粗略图中,我们可能会找到我们在几次遇到的 uda-C:H / Ag样品的特定行为的原因,并将其分配给Ag udsurface簇聚结:AFM揭示的粗糙度, udGISAXS模式,甚至在低金属含量的价态 udband光谱中仍具有明显的Ag 4d特征,并且Ar +离子中的Ag 3d5 / 2负位移就地深度剖析。 ud我们最后的纳米复合材料经历了UHV-和空气停留比较为a- udC:H / Cu。但是,铜会在空气中氧化,但是在本实验中,铜提供了表面簇覆盖范围的最优雅证据。对源自铜和CuO的Cu 2p3 / 2进行的反卷积反过程表明,在有偏斜的样品表面(表面簇为),氧化铜的相对含量高于在接地样品(表面簇为 u n)下的氧化铜含量。由AC:H覆盖)。该系列实验中的最后一个旨在检查我们关于表面团簇覆盖度的结论是基于预期的硫与贵金属原子硅藻素的结合。我们的样品与适当的单晶参考样品一起被一层液态噻吩(C4H4S)覆盖,并且在蒸发后,对其进行了XPS分析。硫的吸附总量通常很低,约为5at。%或更少。尽管测量统计数据有所增加,但仍会导致S 2p核能级 udregion的XPS光谱嘈杂。吸附在参考样品上的S 2p光谱配有三个S 2p1 / 2-S 2p3 / 2双重峰,分配给S udbonds与贵金属,C4H4S中的S和SO键(图3.32-3.34) )。我们的纳米复合材料样品与参考样品的比对结果表明,硫吸附的乌冬面主要来源于C4H4S本身。但是,在有偏斜的情况下,在光谱中观察到与硫键相关的肩部相对于贵金属/贵重金属的较高相对贡献,这表明在有偏斜的样品表面上有更高的金属暴露量。最后,在几个不同的PES实验中,通过对样品进行直接成像, udand使用GISAXS技术,我们发现MS / PACVD获得的低 udnoble具有金属含量的无定形氢化碳纳米复合材料的特征在于:当沉积在接地的基材上时,其最顶层的金属簇被aC:H的微小层覆盖,而当基材被 ud 150 V dc偏压时,其秃顶的表面簇。除了这个主要结果,我们几乎没有遇到其他影响,例如在有偏差的样品 udand表面簇中,在a-C:H / Ag(某种程度上在a-C:H / Cu) udnano复合材料中,a-C:H矩阵中的 udsp2 / sp3配位碳比率增加。通过仅更改一个参数-沉积在 dour接地和偏置的``对应部件''中的基板偏置电压,我们已经证明表面簇覆盖 udeffect源自等离子体沉积过程本身。我们相信应该在等离子体余辉中寻找其原因,即在关闭等离子体电源后立即在离子化 udgas中建立的状态。 ud从实用的角度,我们从原理上描述了机理 ud可以用来调整嵌入在aC:H矩阵中的最顶部金属簇的覆盖范围。 a-C:H中的金属夹杂物可以提高涂层的耐磨损性,因此,当发现具有a-C:H的表面金属簇时,也可以设想其应用。在摩擦学中,当掺入的金属降低润滑性能,即增加摩擦系数时,将是这种情况。在生物相容性材料中,如果掺入的金属是有毒的,如银或铜。反之亦然, u也可以设想当需要最高的群集秃头时的应用,例如出于摩擦学目的,在aC:H中具有低摩擦MoS2和WS2夹杂物。 ud此外,暴露于周围环境中的表面簇可能会影响 ud基于含金属或 udmetal碳化物的无定形太阳能选择性涂层的光学和老化性能氢化碳纳米复合材料。

著录项

  • 作者

    Videnovic Ivan R.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号