首页> 外文OA文献 >Novel silver containing antimicrobial coatings for implant materials. new applications of Ag(I) coordination networks
【2h】

Novel silver containing antimicrobial coatings for implant materials. new applications of Ag(I) coordination networks

机译:用于植入材料的新型含银抗菌涂层。 ag(I)协调网络的新应用

摘要

Modern medicine continuously develops new artificial short-term or permanent devices to assist in the performance of physiological functions. Implantation of medical devices represents one of the most important risk factors of all nosocomial infections, when implant materials become infected due to bacterial adhesion and subsequent formation of bio films. The latter are impossible to treat with antibiotics and represent a dramatic complication for the patient, leading to implant replacement, in the worst case to death. Therefore, prevention of bacterial adhesion and bio film formation is important. udWe have developed new coordination compounds with silver ions and specially designed ligands. This way, one can tune the structure, the light stability and, most importantly for the biological application, the solubility. With an appropriate chemical linker, one is able to connect such compounds to metallic surfaces forming a nano-structured coating. We analyzed the coated surfaces and present the nano-structured surface topography. The chemical composition of the coating on Au(111) as a model surface, the antimicrobial properties of the coated implants, and, on a molecular level, the interaction of silver ions with peptide sequences and subsequent silver nanoparticle formation are presented in this thesis. udWe have investigated this coating using several methods, namely powder X-ray, XPS, AFM, SEM, micro- and nano-calorimetry and antimicrobial studies with different bacteria. XPS and powder x-ray analyses have shown that the deposited compound is [Ag(L)NO3], described previously. The AFM revealed peak-like nano-structures and the SEM measurements the bigger sized crystalline structures 0.5-1000 µm. AAS method have been used to determine the silver loading on the surface in function the crystallisation time and the concentration. The results show that we are able to control the silver loading on the surface choosing the appropriate treating conditions. Our silver coordination compound was shown to form regular material coatings on different metal substrates.udSeveral anti-microbial tests were carried out. Flow-chamber experiments with S. sanguinis have been done to test the coating on dental implant material. The vitality of adhered bacteria was evaluated by applying a dual fluorescent staining, with the result that 99% of bacteria were killed. Plating of coated samples (Au(111) and titanium and steel restorative implant materials) in agar in presence of S. epidermis or S. aureus for 24h showed the formation of large inhibition zones of the order of >2 cm. In vivo microbiological assays show a high efficiency of the silver coating against S. epidermis. The antimicrobial properties were confirmed by microcalorimetry, measuring the bacterial cell multiplication heat. Furthermore the antimicrobial properties are proven for dental as well as general implant materials.udTo study the working mechanism of the silver inside of the bacteria and determining the silver affinity of some amino acids and short amino acid sequences, on-bead screening of split-and-mix libraries have been used. It is a powerful tool for the identification of peptides that attach the silver and induce the formation of silver nanoparticles (AgNPs) when using either light or a chemical reducing agent. It allowed identifying simple tripeptides that would have been difficult to predict rationally. In addition, the study revealed peptide motives that generate AgNPs with distinctly different sizes. Some microbiological assays have been done using isothermal microcalorimetry method to test the antimicrobial effect of the generated AgNPs.udWe have thus developed a new coating which is able to stop bacterial adhesion and multiplication, while being biocompatible with fibroblasts.udud
机译:现代医学不断地开发新的人工短期或永久性装置,以帮助执行生理功能。当植入材料由于细菌粘附和随后形成的生物膜而被感染时,医疗器械的植入是所有医院感染的最重要风险因素之一。后者是不可能用抗生素治疗的,并且对患者来说是一个巨大的并发症,导致植入物的更换,最坏的情况是导致死亡。因此,防止细菌粘附和生物膜形成很重要。 ud我们开发了与银离子和专门设计的配体的新配位化合物。这样,可以调节结构,光稳定性,以及对于生物学应用最重要的溶解度。有了合适的化学连接剂,人们就可以将这些化合物连接到金属表面,从而形成纳米结构涂层。我们分析了涂层表面并提出了纳米结构表面形貌。本文介绍了作为模型表面的Au(111)表面涂层的化学组成,涂层植入物的抗菌性能,以及在分子水平上银离子与肽序列的相互作用以及随后形成的银纳米颗粒的形成。 ud我们使用几种方法研究了这种涂层,即粉末X射线,XPS,AFM,SEM,微米和纳米量热法以及对不同细菌的抗菌研究。 XPS和粉末X射线分析表明,沉积的化合物为[Ag(L)NO3],如前所述。原子力显微镜显示出峰状的纳米结构,而扫描电镜测量的较大尺寸的晶体结构为0.5-1000 µm。 AAS方法已被用来确定表面上银的含量,取决于结晶时间和浓度。结果表明,我们能够选择适当的处理条件来控制表面上的银负载量。已证明我们的银配位化合物可在不同的金属基材上形成规则的材料涂层。 ud进行了多次抗菌测试。已经用血红链球菌进行了流室实验,以测试牙科植入物材料上的涂层。通过应用双重荧光染色评估粘附细菌的生命力,结果杀死了99%的细菌。在表皮葡萄球菌或金黄色葡萄球菌存在下,将琼脂覆盖的样品(Au(111)以及钛和钢的修复性植入材料)在琼脂中电镀24小时,显示出形成了大于2 cm的大抑制区。体内微生物测定显示银涂层抗表皮葡萄球菌的效率很高。通过微量量热法测定细菌细胞的增殖热,从而确认了抗菌性。此外,该抗菌剂已被证明可用于牙科以及一般植入材料。 ud要研究细菌内部银的作用机理并确定某些氨基酸和短氨基酸序列的银亲和力,请对分离后的珠子进行磁珠筛选。和混合库已被使用。当使用光或化学还原剂时,它是鉴定附着银并诱导银纳米颗粒(AgNPs)形成的肽的强大工具。它允许鉴定难以合理预测的简单三肽。此外,该研究还揭示了产生不同大小AgNP的肽动机。我们已经使用等温微量热法进行了一些微生物检测,以测试所产生的AgNPs的抗菌效果。 ud我们因此开发了一种新型涂层,该涂层能够阻止细菌粘附和繁殖,同时与成纤维细胞具有生物相容性。

著录项

  • 作者

    Vig Slenters Tünde;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号