首页> 外文OA文献 >Docking, scoring and binding-affinity prediction in computer-aided drug discovery : I development of a scoring function for quantifying binding affinities
【2h】

Docking, scoring and binding-affinity prediction in computer-aided drug discovery : I development of a scoring function for quantifying binding affinities

机译:计算机辅助药物发现中的对接,评分和结合亲和力预测:我开发了一种用于量化结合亲和力的评分函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Docking and scoring are widely used in nowadays drug discovery process. Scoring function is used as a fast method to estimate the docking results. In this thesis, a regional-defined genetic algorithm approach is developed to optimize the force-field based scoring function.ududHuman pregnane X receptor (PXR) is a nuclear receptor which is promiscuous in its affinity for ligands such as bile acid, steroid hormones, fat-soluble vitamins, prescription and herbal drugs, and environmental chemicals. In this thesis, the development and validation of in silico three-dimensional models for the pregnane X receptors is presented. These model aim at the screening of drug candidates for potential activity towards the PXR.ududPotential side effects and toxicity of anti-trypanosomiasic active compounds were investigated using the VirtualToxLab. This technology identifies the binding mode of a small-molecule compound toward a series of 16 target proteins (nuclear receptors, cytochrome P450 enzymes, hERG, AhR) known or suspected to trigger adverse effects. The kinetic stability of the identified hits are evaluated by molecular dynamics simulations.
机译:对接和评分在当今的药物发现过程中被广泛使用。计分功能用作估计对接结果的快速方法。本文开发了一种区域定义的遗传算法方法,以优化基于力场的评分功能。 ud ud人妊娠X受体(PXR)是一种核受体,与配体(如胆汁酸,类固醇激素,脂溶性维生素,处方药和草药以及环境化学品。本文提出了孕烷X受体的计算机三维模型的开发和验证。这些模型旨在筛选针对PXR的潜在活性的候选药物。使用VirtualToxLab研究了抗锥虫活性化合物的潜在副作用和毒性。这项技术可以识别小分子化合物与已知或怀疑会引起不良反应的一系列16种靶蛋白(核受体,细胞色素P450酶,hERG,AhR)的结合方式。通过分子动力学模拟评估确定的命中的动力学稳定性。

著录项

  • 作者

    Hu Zhenquan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号