首页> 外文OA文献 >Recurrent neuro-fuzzy modeling and fuzzy MDPP control for flexible servomechanisms
【2h】

Recurrent neuro-fuzzy modeling and fuzzy MDPP control for flexible servomechanisms

机译:用于柔性伺服机构的循环神经模糊建模和模糊mDpp控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the nonlinear system identification and control for flexible servomechanisms. A multi-step-ahead recurrent neuro-fuzzy model consisting of local linear ARMA (autoregressive moving average) models with bias terms is suggested for approximating the dynamic behavior of a servomechanism including the effects of flexibility and friction. The RLS ( recursive least squares) algorithm is adopted for obtaining the optimal consequent parameters of the rules. Within each fuzzy operating region, a local MDPP ( minimum degree pole placement) control law with integral action can be constructed based on the estimated local model. Then a fuzzy controller composed of these local MDPP controls can be easily constructed for the servomechanism. The techniques are illustrated using computer simulations.
机译:本文考虑了柔性伺服机构的非线性系统辨识与控制。提出了一个由局部线性ARMA(自回归移动平均)模型和偏差项组成的多步递归神经模糊模型,用于近似伺服机构的动态行为,包括柔性和摩擦的影响。采用RLS(递归最小二乘)算法来获取规则的最优后续参数。在每个模糊操作区域内,可以基于估计的局部模型构造具有积分作用的局部MDPP(最小度极放置)控制律。然后,可以很容易地构造出由这些局部MDPP控制组成的模糊控制器。使用计算机仿真说明了这些技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号