首页> 外文OA文献 >STUDY ON THE SENSITIVITY OF FUNCTIONALIZEDNANOWIRES USING VARIED CHEMICALS
【2h】

STUDY ON THE SENSITIVITY OF FUNCTIONALIZEDNANOWIRES USING VARIED CHEMICALS

机译:sTUDY ON THE sENsITIVITY OF FUNCTIONaLIZEDNaNOWIREs UsING VaRIED CHEmICaLs

摘要

Silicon nanowire-based metal-oxide-semiconductor field-effect transistors (SiNW MOSFETs) havebeen demonstrated excellent sensitivity and stability after surface modification and functionalization ofnanowires. Chemical molecules have been applied to functionalize the surface of silicon surface. Silanecoupling agents are good candidates for forming self-assembled monolayers (SAMs) by chemicallyinteracting with silicon oxide. Those chemically modified SAMs can provide a functional surface tofurther conjugate biomolecules on SiNW MOSFETs. After functionalization, SiNW MOSFETs withtunably biocompatible surface can sustain a functional biointerface for biological tests. In this work,SiNW MOSFETs were fabricated using the standard I-line stepper of MOS semiconducting process andthen visualized by scanning electron microscopy (SEM). The n-type SiNW MOSFETs devices werefabricated after the process of trimming, the scale of nanowire was down to a level of approximate 165 nm.3-aminopropyl trimethoxysilane (APTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) SAMs wereindependently used to modify the surface of SiNW MOSFETs for pH sensing in biological buffer solution.Atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA) were appliedto characterize before and after surface modification. AFM found APTMS and MPTMS were successfullymodified on silicon substrates. The average vertical length of APTMS and MPTMS SAMs from our AFMobservation was around 2.628 nm and 2.698 nm, respectively. ESCA showed the specifically functionalamino (-NH2) groups and mercapto (-SH) groups on each APTMS and MPTMS modified silicon substrates.The specific amine functional group at 399.4 eV occurred after the modification of APTMS on siliconsubstrate in N1s spectra. S2p spectra showed the specific binding at 163.6 eV (C-SH) and 165.8 eV (-C-SS-C-) after the modification of MPTMS on silicon substrate. Those disulfide bonds further influenced theorganization of MPTMS-SAM on the surface; therefore, the APTMS had better SAM performance on oursilicon substrate. On the other hand, electrical measuring system was used for elucidating that the suitablesurface modification would have great impact on the sensing response and sensitivity. Varied biologicalPBS solutions at different pH values showed that unmodified SiNW MOSFETs were sensitive to theH+ ion change. When the pH level of the solution increased, the drain current of the unmodified SiNWMOSFETs decreased accordingly. In comparison with unmodified nanowires in current measurement,the changes of current of APTMS or MPTMS modified nanowires were enhanced in sensing of differentpH solutions. Our results also showed that amino and mercapto groups of APTMS and MPTMS canimprove the protonation and deprotonation reactions in different pH solutions. Both APTMS and MPTMSmodified SiNW MOSFETs in pH sensings possessed good electrical sensing response and sensitivity incontrast with unmodified one. Moreover, in consequence of lower mercaptal groups of MPTMS on NWs,the relatively minor signal responses to varied pH solutions in MPTMS modified SiNW MOSFETs. Theelectrical measurement showed that the amino groups of APTMS significantly improve the sensitivity ofSiNW MOSFET in different pH sensings. Our results showed that adequate modification could provide afunctionable surface for SiNW MOSFETs. We inferred the APTMS modified SiNW MOSFETs could be areal-time sensor for different pH levels detection and further applied in monitoring biological environmentin the future.
机译:硅纳米线基金属氧化物半导体场效应晶体管(SiNW MOSFETs)在对纳米线进行表面改性和功能化后,表现出出色的灵敏度和稳定性。化学分子已被应用以使硅表面的表面功能化。硅烷偶联剂是通过与氧化硅发生化学相互作用而形成自组装单层(SAM)的良好候选物。那些经过化学修饰的SAM可以为SiNW MOSFET上的共轭生物分子提供功能表面。功能化后,具有可生物相容性表面的SiNW MOSFET可以维持功能性生物界面以进行生物学测试。在这项工作中,SiNW MOSFET使用MOS半导体工艺的标准I线步进器制造,然后通过扫描电子显微镜(SEM)可视化。修整后制造出n型SiNW MOSFET器件,纳米线的尺寸降至约165 nm.3-氨基丙基三甲氧基硅烷(APTMS)和3-巯基三甲氧基硅烷(MPTMS)SAMs独立用于修饰表面用于在生物缓冲溶液中检测pH的SiNW MOSFET。在表面改性前后,分别应用了原子力显微镜(AFM)和化学分析电子光谱(ESCA)进行表征。 AFM发现APTMS和MPTMS已成功在硅衬底上进行了改性。根据我们的原子力显微镜观察,APTMS和MPTMS SAM的平均垂直长度分别约为2.628 nm和2.698 nm。 ESCA在每个APTMS和MPTMS修饰的硅底物上均显示了特定的官能氨基(-NH2)和巯基(-SH)基团。在N1s光谱中对APTMS进行修饰后,在399.4 eV处出现了特定的胺官能团。 S2p光谱显示在硅基板上修饰MPTMS后,在163.6 eV(C-SH)和165.8 eV(-C-SS-C-)处具有特异性结合。这些二硫键进一步影响了MPTMS-SAM在表面的组织。因此,APTMS在我们的硅基板上具有更好的SAM性能。另一方面,使用电气测量系统来说明合适的表面改性将对传感响应和灵敏度产生很大影响。不同pH值的各种生物PBS溶液表明,未修饰的SiNW MOSFET对H +离子变化敏感。当溶液的pH值增加时,未修饰的SiNWMOSFET的漏极电流相应降低。与未经修饰的纳米线相比,在电流测量中,APTMS或MPTMS修饰的纳米线的电流变化在感应不同pH溶液时得到了增强。我们的结果还表明,APTMS和MPTMS的氨基和巯基可以改善不同pH溶液中的质子化和去质子化反应。 pH传感中的APTMS和MPTMS改性的SiNW MOSFET都具有良好的电传感响应和灵敏度,与未经修饰的MOSFET相比。此外,由于NW上MPTMS的巯基基团较少,因此对MPTMS改性的SiNW MOSFET中不同pH溶液的信号响应相对较小。电学测量表明,在不同的pH传感下,APTMS的氨基显着提高了SiNW MOSFET的灵敏度。我们的结果表明,适当的修改可以为SiNW MOSFET提供有效的表面。我们推断,经APTMS改性的SiNW MOSFETs可以作为用于不同pH值检测的面波时间传感器,并在将来进一步应用于生物环境监测。

著录项

  • 作者

    Chun-Chun Hsu; Shu-Ping Lin;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号