首页> 外文OA文献 >Statistical inference for spatial and spatio-temporal processes.
【2h】

Statistical inference for spatial and spatio-temporal processes.

机译:空间和时空过程的统计推断。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

First, the time series analysis was widely introduced and used in the statistical world. Next, the analysis of spatio-temporal processes has followed, which is taking into account not only when, but also where the phenomenon under observation is taking place. We mainly focus on stationary processes that are assumed to be taking place regularly over both time and space. We examine ways of estimating the parameters involved, without the risk of coming up with a very large bias for our estimators; the bias is the typical problem of estimation for the parameters of stationary processes on Zd, for any d > 2. We particularly study the cases of spatio-temporal ARMA processes and spatial auto-normal formulations on Zd. For both cases and any positive integer d, we propose estimators that are consistent, asymptotically unbiased and normal, if certain conditions are satisfied. We do not only study the spatio-temporal processes that are observed regularly over space, but also those, for which we have recordings on a fixed number of locations anywhere. We might follow the route of a multivariate time series methodology then. Thus, the asymptotic behavior of the estimators proposed might be analyzed as the number of recordings over time only tends to infinity.
机译:首先,时间序列分析被广泛引入并用于统计领域。接下来,进行时空过程分析,不仅要考虑何时何地发生观察现象。我们主要关注假定在时间和空间上定期发生的平稳过程。我们研究了估计相关参数的方法,而不会给我们的估计器带来很大的偏差。对于任何d> 2,偏差都是估计Zd上平稳过程参数的典型问题。我们特别研究Zd上时空ARMA过程和空间自正态公式的情况。对于这两种情况以及任何正整数d,如果满足某些条件,我们建议的估计量是一致的,渐近无偏且是正态的。我们不仅研究定期在空间上观察到的时空过程,而且还研究那些我们在任何地方的固定数量位置上都有记录的时间过程。然后,我们可能会遵循多元时间序列方法论的路线。因此,建议的估计量的渐近行为可以进行分析,因为随着时间的推移记录数量只会趋于无穷大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号