首页> 外文OA文献 >A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images
【2h】

A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images

机译:一种基于稀疏度的光谱域光学相干断层扫描图像分割简化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optical coherence tomography (OCT) has emerged as a promising image modality to characterize biological tissues. With axio-lateral resolutions at the micron-level, OCT images provide detailed morphological information and enable applications such as optical biopsy and virtual histology for clinical needs. Image enhancement is typically required for morphological segmentation, to improve boundary localization, rather than enrich detailed tissue information. We propose to formulate image enhancement as an image simplification task such that tissue layers are smoothed while contours are enhanced. For this purpose, we exploit a Total Variation sparsity-based image reconstruction, inspired by the Compressed Sensing (CS) theory, but specialized for images with structures arranged in layers. We demonstrate the potential of our approach on OCT human heart and retinal images for layers segmentation. We also compare our image enhancement capabilities to the state-of-the-art denoising techniques.
机译:光学相干断层扫描(OCT)已成为一种有前途的图像形式,以表征生物组织。利用微米级的轴外分辨率,OCT图像可提供详细的形态学信息,并能够实现诸如光学活检和虚拟组织学之类的应用以满足临床需求。图像分割通常需要图像增强,以改善边界定位,而不是丰富详细的组织信息。我们建议将图像增强公式化为图像简化任务,以便在增强轮廓的同时平滑组织层。为此,我们在压缩感知(CS)理论的启发下,利用了基于总变化稀疏性的图像重建技术,但专门针对具有分层结构的图像。我们证明了我们的方法在OCT人心脏和视网膜图像上进行分层的潜力。我们还将图像增强功能与最新的降噪技术进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号