首页> 外文OA文献 >An automated frequency tracking method for structural health monitoring using vibration data
【2h】

An automated frequency tracking method for structural health monitoring using vibration data

机译:一种利用振动数据进行结构健康监测的自动频率跟踪方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The process of extracting modal parameters using vibration response data from aerospace, civil and mechanical structures is well-established and many techniques exist to cater for the availability of spatial and temporal data. These techniques need extensive interaction with an expert user to guide them towards an acceptable set of solutions and are not adequate for structural health monitoring which fundamentally requires an automated process. Research into automated algorithms for the extraction and tracking of modal parameters started to gather momentum recently due to advances in technology and computing. Currently there is a lack of automated procedures due to the difficulty of replacing the interactions of an expert user with software algorithms and those that have been proposed have not yet been widely adopted. In this thesis, we propose a new automated method to track resonant frequencies for the purpose of detecting change. The method uses wavelet decomposition, principal component analysis, spectrum estimation and adaptive filtering. The aim is to identify resonant frequencies and then to monitor their magnitudes and frequencies in an automated fashion without user interaction for the detection of change in performance. The proposed method is validated on several benchmark problems widely studied in the literature, one simulated and four experimental. It is shown that using the new method it is possible to detect all the data cases for these benchmark structures because they produce changes in the resonant frequencies or in their magnitudes. The new method is also compared with an existing automated method called frequency domain decomposition (FDD) and it is shown that for the benchmark problems considered in this thesis the frequency tracking performance of the new method is superior.
机译:利用来自航空航天,民用和机械结构的振动响应数据提取模态参数的过程已经很成熟,并且存在许多技术来满足空间和时间数据的可用性。这些技术需要与专家用户进行广泛的交互,以指导他们寻求一套可接受的解决方案,并且不足以进行基本要求自动化过程的结构健康监测。由于技术和计算的进步,用于模态参数的提取和跟踪的自动化算法的研究近来开始势头强劲。当前,由于难以用软件算法代替专家用户的交互,并且缺乏自动化的程序,并且已经提出的那些尚未被广泛采用。在本文中,我们提出了一种新的自动方法来跟踪共振频率,以检测变化。该方法使用小波分解,主成分分析,频谱估计和自适应滤波。目的是识别谐振频率,然后以自动化方式监视其幅度和频率,而无需用户干预以检测性能变化。该方法在文献中广泛研究的几个基准问题上得到了验证,其中一个是模拟的,四个是实验的。结果表明,使用新方法可以检测出这些基准结构的所有数据情况,因为它们会产生谐振频率或其幅度的变化。将该新方法与现有的称为频域分解(FDD)的自动化方法进行了比较,结果表明,对于本文考虑的基准问题,该新方法的频率跟踪性能优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号