首页> 外文OA文献 >Controlling Dopant Distributions and Structures in Advanced Semiconductors
【2h】

Controlling Dopant Distributions and Structures in Advanced Semiconductors

机译:控制先进半导体中的掺杂剂分布和结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The suitability of silicon for micro and sub-micro electronic devices is being challenged by the aggressive and continuous downscaling of device feature size. New materials with superior qualities are continually sought-after. In this thesis, defects are examined in two sets of silicon alternate materials; germanium (Ge) and III-V semiconductors. Point defects are of crucial importance in understanding and controlling the properties of these electronic materials. Point defects usually introduce energy levels into the band gap, which influence the electronic performance of the material. They are also key in assisting mass transport.ududHere, atomistic scale computational methods are employed to investigate the formation and migration of defects in Ge and III-V semiconductors. The behaviour of n-type dopants coupled to a vacancy in Ge (known as E-centres) is reported from thermodynamic and kinetic points of view, revealing that these species are highly mobile, consequently, a strategy is proposed to retard one of the n-dopants. Further, the electronic structure of Ge is examined and the changes induced in it due to the application of different types of strain along different planes and directions. The results obtained agree with established experimental values regarding the bands transition from indirect to direct under biaxial strain. This is used to support further predictions, which indicate that a moderate strain parallel to the [111] direction can efficiently transform Ge into a direct band gap material, with a band gap energy useful for technological applications.ududVacancies and antisites in III-V semiconductors have been studied under various growth and doping conditions. Results presented in this thesis help predict and explain the stability of some defects over a range of growth conditions. This, together with knowledge of the kinetics of migration of Ga and As/Sb vacancies is used to explain the disparities in self-diffusion between GaAs and GaSb.
机译:硅对于微型和亚微型电子设备的适用性正受到设备特征尺寸不断缩小的挑战。不断追求品质卓越的新材料。本文研究了两组硅替代材料中的缺陷。锗(Ge)和III-V半导体。点缺陷对于理解和控制这些电子材料的特性至关重要。点缺陷通常会在能带隙中引入能级,从而影响材料的电子性能。它们也是协助质量传输的关键。 ud ud在此,采用原子尺度计算方法来研究Ge和III-V半导体中缺陷的形成和迁移。从热力学和动力学的角度报道了n型掺杂物的行为与Ge中的空位(称为E中心)耦合,揭示了这些物质具有高度的移动性,因此,提出了一种抑制n型掺杂物的策略。 -掺杂剂。此外,研究了Ge的电子结构,以及由于沿不同平面和方向施加不同类型的应变而引起的Ge的变化。获得的结果与建立的关于在双轴应变下从间接到直接的谱带跃迁的实验值一致。这可用于支持进一步的预测,这些预测表明平行于[111]方向的中等应变可以有效地将Ge转变为直接带隙材料,并且带隙能量对于技术应用很有用。 ud udIII中的空穴和反位点已经在各种生长和掺杂条件下研究了-V半导体。本文提出的结果有助于预测和解释某些缺陷在一系列生长条件下的稳定性。这与对Ga和As / Sb空位迁移动力学的了解一起用于解释GaAs和GaSb之间自我扩散的差异。

著录项

  • 作者

    Tahini Hassan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号