首页> 外文OA文献 >Development of pulsed diode pumped solid state lasers in the bounce amplifier geometry
【2h】

Development of pulsed diode pumped solid state lasers in the bounce amplifier geometry

机译:在反射放大器几何结构中开发脉冲二极管泵浦固体激光器

摘要

The work in this thesis focuses on the development of diode pumped solid state (DPSS) lasers, constructed using the bounce amplifier geometry. The bounce amplifier geometry employs a simple side pumping scheme using diode bars and stacks, leading to an efficient and compact system. The laser mode is total internally reflected at the pump surface, spatially averaging gain and thermal non-uniformities giving potential for excellent beam quality from these systems. In this thesis, novel pulsed laser sources based on the 1µm transition of the Nd3+ ion and the 3µm transition of the Er3+ ion are developed, and investigated both experimentally and numerically. udAn acousto-optically Q-switched Nd:YVO4 laser operating at 1064nm with ultra-high gain (~105) is developed, and using a novel pulse control technique is demonstrated to provide better performance and greater flexibility of the pulsing parameters. Pulsed lasers are useful for many applications, including industrially in laser micromachining and laser marking, where having greater control of laser parameters (e.g. pulse repetition rate, pulse duration and pulse energy) enhances the usefulness of the laser significantly. A problem associated with Q-switching of a high-gain laser system is the difficulty in obtaining clean, single pulse operation from very high (~1MHz) to low (~1kHz) repetition rates. The pulse control technique demonstrated for the first time in this work addresses this issue. The technique uses a secondary laser cavity to control the gain of a primary laser cavity. Prior to implementation of the technique, laser breakthrough occurred at low repetition rates due to the excessive gain and single pulsed operation was not possible below 150kHz. Using the pulse control technique, single pulsed operation was obtained from 800kHz down to 1kHz, with good beam quality across the range, as well as the ability for pulse energy control demonstrated.udThe development of 3μm laser sources, using Er3+ doped materials is presented. Lasers operating at 3µm are useful directly in applications in medicine and dentistry due to being near the peak of water absorption, as well as indirectly as pump sources for optical parametric generation for production of tuneable mid-IR radiation for spectroscopy, security and defence, and remote sensing applications. In this work, a comparison of the Er:YAG and Er:YSGG laser materials operating at the 3µm transition is undertaken showing superior performance from the less commonly used Er:YSGG material. Different cavity designs are subsequently investigated using the Er:YSGG laser material and an electro-optically Q-switched Er:YSGG laser at 3µm is developed. Numerical modelling of the erbium laser is presented providing greater understanding of laser operation in this complex laser system.
机译:本论文的工作重点是利用反弹放大器几何构造的二极管泵浦固态(DPSS)激光器的开发。弹跳放大器的几何结构采用了使用二极管条和堆叠的简单侧泵方案,从而实现了高效紧凑的系统。激光模式在泵浦表面被全内反射,空间平均增益和热不均匀性使这些系统具有极好的光束质量。本文研究了基于Nd3 +离子的1μm跃迁和Er3 +离子的3μm跃迁的新型脉冲激光源,并进行了实验和数值研究。 ud开发了一种工作在1064nm且具有超高增益(〜105)的声光Q开关Nd:YVO4激光器,并证明了使用新型脉冲控制技术可提供更好的性能和更大的脉冲参数灵活性。脉冲激光器可用于许多应用,包括工业上的激光微加工和激光标记,其中对激光参数(例如,脉冲重复率,脉冲持续时间和脉冲能量)的更好控制大大提高了激光器的实用性。与高增益激光系统的Q开关相关的问题是难以获得从非常高(〜1MHz)到低(〜1kHz)重复频率的干净的单脉冲操作。这项工作中首次演示的脉冲控制技术解决了这个问题。该技术使用次级激光腔来控制初级激光腔的增益。在实施该技术之前,由于过高的增益,激光穿透以低重复频率发生,并且在150kHz以下不可能进行单脉冲操作。使用脉冲控制技术,可以在800kHz至1kHz的频率范围内获得单脉冲操作,并在整个范围内具有良好的光束质量,并展示了脉冲能量控制的能力。 ud介绍了使用Er3 +掺杂材料开发3μm激光源的方法。 。工作在3µm的激光由于吸水率接近峰值,因此可直接用于医学和牙科领域,还间接用作产生光学参量的泵浦源,以产生可调谐的中红外辐射,以用于光谱学,安全性和防御性,以及遥感应用。在这项工作中,对在3µm跃迁处工作的Er:YAG和Er:YSGG激光材料进行了比较,显示出较不常用的Er:YSGG材料具有更高的性能。随后,使用Er:YSGG激光材料研究了不同的腔设计,并开发了3μm的电光调Q的Er:YSGG激光器。提出了laser激光的数值模型,可以更好地了解这种复杂激光系统中的激光操作。

著录项

  • 作者

    Arbabzadah Emma;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号