首页> 外文OA文献 >Low-overhead fault-tolerant logic for field-programmable gate arrays
【2h】

Low-overhead fault-tolerant logic for field-programmable gate arrays

机译:用于现场可编程门阵列的低开销容错逻辑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While allowing for the fabrication of increasingly complex and efficient circuitry, transistor shrinkage and count-per-device expansion have major downsides: chiefly increased variation, degradation and fault susceptibility. For this reason, design-time consideration of faults will have to be given to increasing numbers of electronic systems in the future to ensure yields, reliabilities and lifetimes remain acceptably high. Many mathematical operators commonly accelerated in hardware are suited to modification resulting in datapath error detection and correction capabilities with far lower area, performance and/or power consumption overheads than those incurred through the utilisation of more established, general-purpose fault tolerance methods such as modular redundancy. Field-programmable gate arrays are uniquely placed to allow further area savings to be made thanks to their dynamic reconfigurability.ududThe majority of the technical work presented within this thesis is based upon a benchmark hardware accelerator---a matrix multiplier---that underwent several evolutions in order to detect and correct faults manifesting along its datapath at runtime. In the first instance, fault detectability in excess of 99% was achieved in return for 7.87% additional area and 45.5% extra latency. In the second, the ability to correct errors caused by those faults was added at the cost of 4.20% more area, while 50.7% of this---and 46.2% of the previously incurred latency overhead---was removed through the introduction of partial reconfiguration in the third. The fourth demonstrates further reductions in both area and performance overheads---of 16.7% and 8.27%, respectively---through systematic data width reduction by allowing errors of less than ??0.5% of the maximum output value to propagate.
机译:在允许制造越来越复杂和有效的电路时,晶体管的缩小和每器件数量的增加有主要缺点:主要是增加了变化,劣化和故障敏感性。因此,将来必须在设计时考虑故障,以增加电子系统的数量,以确保良率,可靠性和使用寿命保持在可接受的水平。许多通常在硬件中得到加速的数学运算符都适合进行修改,从而导致数据路径错误检测和纠正功能的面积,性能和/或功耗开销远远低于通过使用更成熟的通用容错方法(例如模块化)而产生的开销冗余。现场可编程门阵列的独特之处在于其动态可重新配置性,从而可以进一步节省面积。 ud ud本论文中介绍的大多数技术工作都是基于基准硬件加速器-矩阵乘法器- -为了在运行时检测和纠正沿其数据路径出现的故障进行了几次改进。在第一个实例中,实现了超过99%的故障可检测性,以换取7.87%的额外区域和45.5%的额外延迟。在第二种方法中,由于增加了4.20%的面积,因此增加了纠正由这些故障引起的错误的能力,而通过引入以下方法,删除了50.7%的空间(以及以前发生的延迟开销的46.2%)。第三部分进行部分重新配置。第四个演示了通过允许小于最大输出值的0.5%的误差传播的系统数据宽度减小,分别减少了面积和性能开销(分别为16.7%和8.27%)。

著录项

  • 作者

    Davis James;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号