首页> 外文OA文献 >Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm
【2h】

Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm

机译:使用新颖,有效的最大似然算法从时间间隔的样本估计有效种群大小

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effective population size Embedded Image is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating Embedded Image have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator Embedded Image for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying Embedded Image is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator Embedded Image, and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of Embedded Image to several million, hence allowing the estimation of larger Embedded Image. Finally, we demonstrate how this algorithm can cope with nonconstant Embedded Image scenarios and be used as a likelihood-ratio test to test for the equality of Embedded Image throughout the sampling horizon. An R package ???NB??? is now available for download to implement the method described in this article.
机译:有效种群大小嵌入式图像是种群遗传学和进化生物学的关键参数,因为它量化了由于遗传漂移而导致的等位基因频率变化的预期分布。已经描述了几种估计嵌入式图像的方法,其中最直接的方法是使用在两个或多个时间点测量的等位基因频率。本文开发了一种新的基于似然估计器的嵌入式图像,该图像利用时间数据可用于当代有效人口规模。现有的似然方法计算量大,并且在基础嵌入式图像很大时无法处理这种情况。本文尝试通过使用隐藏的马尔可夫算法并对等位基因频率和转移概率应用连续近似来解决此问题。进行了广泛的仿真,以评估所提出的估计器嵌入式图像的性能,结果表明,与以前的方法相比,该方法更准确且方差更低。新的估算器还可以将计算时间至少减少1000倍,并将“嵌入式图像”的上限放宽到几百万,因此可以估算更大的“嵌入式图像”。最后,我们演示了该算法如何应对非恒定嵌入式图像场景,并用作似然比测试,以测试整个采样范围内嵌入式图像的均等性。 R包??? NB ???现在可以下载以实现本文描述的方法。

著录项

  • 作者

    Hui T-YJ; Burt A;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号