首页> 外文OA文献 >Energy-based Adaptive Compression in Water Network Control Systems
【2h】

Energy-based Adaptive Compression in Water Network Control Systems

机译:水网控制系统中基于能量的自适应压缩

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 IEEE.Contemporary water distribution networks exploit Internet of Things (IoT) technologies to monitor and control the behavior of water network assets. Smart meters/sensor and actuator nodes have been used to transfer information from the water network to data centers for further analysis. Due to the underground position of water assets, many water companies tend to deploy battery driven nodes which last beyond the 10-year mark. This prohibits the use of high-sample rate sensing therefore limiting the knowledge we can obtain from the recorder data. To alleviate this problem, efficient data compression enables high-rate sampling, whilst reducing significantly the required storage and bandwidth resources without sacrificing the meaningful information content. This paper introduces a novel algorithm which combines the accuracy of standard lossless compression with the efficiency of a compressive sensing framework. Our method balances the tradeoffs of each technique and optimally selects the best compression mode by minimizing reconstruction errors, given the sensor node battery state. To evaluate our algorithm, real high-sample rate water pressure data of over 170 days and 25 sensor nodes of our real world large scale testbed was used. The experimental results reveal that our algorithm can reduce communication around 66% and extend battery life by 46% compared to traditional periodic communication techniques.
机译:©2016 IEEE。当代的配水网络利用物联网(IoT)技术来监控水网络资产的行为。智能仪表/传感器和执行器节点已用于将信息从供水网络传输到数据中心,以进行进一步分析。由于水资产的地下位置,许多自来水公司倾向于部署电池驱动的节点,其使用寿命超过10年。这禁止使用高采样率感测,因此限制了我们可以从记录器数据中获得的知识。为了缓解此问题,有效的数据压缩可实现高速率采样,同时在不牺牲有意义的信息内容的情况下,大大减少了所需的存储和带宽资源。本文介绍了一种新颖的算法,该算法将标准无损压缩的准确性与压缩感测框架的效率相结合。在给定传感器节点电池状态的情况下,我们的方法平衡了每种技术的权衡因素,并通过最小化重构误差来最佳地选择最佳压缩模式。为了评估我们的算法,我们使用了超过170天的真实高采样率水压数据和我们真实世界的大型测试台上的25个传感器节点。实验结果表明,与传统的周期性通信技术相比,我们的算法可以减少66%的通信,并延长电池寿命46%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号