首页> 外文OA文献 >A Three – tier bio-implantable sensor monitoring and communications platform
【2h】

A Three – tier bio-implantable sensor monitoring and communications platform

机译:一种三层生物植入式传感器监测和通信平台

摘要

One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices.udThis research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors.udIn the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density.udOur ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used.udThe deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world.udA power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers.
机译:新型生物可植入传感器技术问世的主要障碍是需要一种可靠的电源和数据通信平台,该平台必须能够连续,远程和无线地监控深层可植入生物医学设备。 ud这项研究提出了将两者完美结合的可行性和潜力。建立了“人类友好”的感应和超声技术,以产生适用于低功率,周期性激活的可植入模拟生物传感器的概念验证,通用的多层功率传输和数据通信平台。在所示的子系统中,5 W的功率通过一对39 mm(初级)和33 mm(次级)圆形印刷螺旋线圈(PSC)之间的10 mm间隙传输。这些是使用8000 dpi分辨率的光绘仪打印的,并通过湿蚀刻在PCB上制造,以达到最大允许的密度。 ud我们的超声子系统由一对Pz21(发射器)和Pz26(接收器)压电PZT陶瓷盘组成此处还首次报告了由低频,径向/平面激励(-31模式)驱动,没有声学匹配层的情况。这些光盘的特点是经过传播罐测试,并由感应耦合功率直接驱动,以将29μW的功率传送到接收器(植入物),该接收器使用位于均匀液体体模内70毫米深的低压启动IC。 ud因此,深植入物每800 ms间歇地供电以给电容器充电,这使它的微控制器以500 kHz时钟工作,可以在〜的周期内传输单个半字节(4位)数字化的感测数据。从幻象的深处到外界18毫秒。 ud报道了使用我们的原型CMOS逻辑门IC驱动器的功率传输效率为83%,用于系统的电感耦合部分。整个原型系统的功耗为2.3 W,各层的总功率传输效率为1%。

著录项

  • 作者

    Sanni Ayodele Adebayo;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号