首页> 外文OA文献 >On Global Optimization of Walking Gaits for the Compliant Humanoid Robot COMAN Using Reinforcement Learning
【2h】

On Global Optimization of Walking Gaits for the Compliant Humanoid Robot COMAN Using Reinforcement Learning

机译:基于强化学习的柔顺仿人机器人步态步态全局优化研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In ZMP trajectory generation using simple models, often a considerable amount of trials and errors are involved to obtain locally stable gaits by manually tuning the gait parameters. In this paper a 15 degrees of Freedom dynamic model of a compliant humanoid robot is used, combined with reinforcement learning to perform global search in the parameter space to produce stable gaits. It is shown that for a given speed, multiple sets of parameters, namely step sizes and lateral sways, are obtained by the learning algorithm which can lead to stable walking. The resulting set of gaits can be further studied in terms of parameter sensitivity and also to include additional optimization criteria to narrow down the chosen walking trajectories for the humanoid robot.
机译:在使用简单模型的ZMP轨迹生成中,通常涉及大量试验和错误,以通过手动调整步态参数来获得局部稳定的步态。在本文中,使用了柔顺型人形机器人的15度自由度动力学模型,并结合了强化学习,以在参数空间中进行全局搜索以产生稳定的步态。结果表明,对于给定的速度,通过学习算法可以获得多组参数,即步长和横向摇摆,这可以导致稳定的步行。可以根据参数敏感性进一步研究所得的步态集,还可以包括其他优化标准,以缩小类人机器人的所选行走轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号