首页> 外文OA文献 >A distributed networked approach for fault detection of large-scale systems
【2h】

A distributed networked approach for fault detection of large-scale systems

机译:一种用于大规模系统故障检测的分布式网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.
机译:网络系统在故障诊断体系结构的开发中提出了一些关键的新挑战。本文提出了一种适用于大规模互连系统的新型分布式网络故障检测方法。所提出的公式将同步方法与滤波方法结合在一起,以减少测量噪声和时间延迟对故障检测性能的影响。所提出的方法允许监视多速率系统,在异步和延迟测量可用的情况下。这是通过开发虚拟传感器方案实现的,该方案具有基于模型的重新同步算法和用于分布式故障诊断单元的延迟补偿策略。监视体系结构利用具有学习能力的自适应近似器来处理互连动力学中的不确定性。引入了具有时变权重的基于共识的估计器,以在多个子系统之间共享变量的情况下提高故障检测能力。此外,时变阈值功能旨在防止误报警报。分析性故障检测能力得到了充分的条件,并给出了广泛的仿真结果,以说明分布式故障检测技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号