首页> 外文OA文献 >Multi-scale imaging of porous media and flow simulation at the pore scale
【2h】

Multi-scale imaging of porous media and flow simulation at the pore scale

机译:多孔介质的多尺度成像和孔隙尺度的流动模拟

摘要

In the last decade, the fundamental understanding of pore-scale flow in porous media has been undergoing a revolution through the recent development of new pore-scale imaging techniques, reconstruction of three-dimensional pore space images, and advances in the computational methods for solving complex fluid flow equations directly or indirectly on the reconstructed three-dimensional pore space images. Important applications include hydrocarbon recovery from - and CO2 storage in - reservoir rock formations. Of particular importance is the consideration of carbonate reservoirs, as our understanding of carbonates with respect to geometry and fluid flow processes is still very limited in comparison with sandstone reservoirs. This thesis consists of work mainly performed within the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC) project, focusing on development of three dimensional imaging techniques for accurately characterizing and predicting flow/transport properties in both complex benchmark carbonate and sandstone rock samples. udFirstly, the thesis presents advances in the application of Confocal Laser Scanning Microscopy (CLSM), including the improvement of existing sample preparation techniques and a step-by step guide for imaging heterogeneous rock samples exhibiting sub-micron resolution pores. A novel method has been developed combining CLSM with sequential grinding and polishing to obtain deep 3D pore-scale images. This overcomes a traditional limitation of CLSM, where the depth information in a single slice is limited by attenuation of the laser light. Other features of this new method include a wide field of view at high resolution to arbitrary depth; fewer grinding steps than conventional serial sectioning using 2D microscopy; the image quality does not degrade with sample size, as e.g. in micro-computed tomography (micro- CT) imaging. udSecondly, it presents two fundamental issues – Representative Element of Volume (REV) and scale dependency which are addressed with qualitative and quantitative solutions for rocks increasing in heterogeneity from beadpacks to sandpacks to sandstone to carbonate rocks. The REV is predicted using the mathematical concept of the Convex Hull, CH, and the Lorenz coefficient, LC, to investigate the relation between two macroscopic properties simultaneously, in this case porosity and absolute permeability. udThe effect of voxel resolution is then studied on the segmented macro-pore phase (macro-porosity) and intermediate phase (micro-porosity) and the fluid flow properties of the connected macro-pore space using lattice-Boltzmann (LB) and pore network (PN) modelling methods. A numerical coarsening (up-scaling) algorithm have also been applied to reduce the computational power and time required to accurately predict the flow properties using the LB and PN methods.udFinally, a quantitative methodology has been developed to predict petrophysical properties, including porosity and absolute permeability for X-ray medical computed tomography (CT) carbonate core images of length 120 meters using image based analysis. The porosity is calculated using a simple segmentation based on intensity grey values and the absolute permeability using the Kozeny-Carman equation. The calculated petrophysical properties were validated with the experimental plug data.
机译:在过去的十年中,随着新的孔尺度成像技术的发展,三维孔空间图像的重建以及求解方法的进步,对多孔介质中孔尺度流动的基本理解正在经历一场革命。在重建的三维孔隙空间图像上直接或间接地建立复杂的流体流动方程。重要的应用包括从储层岩层中回收碳氢化合物和在其中储存二氧化碳。特别重要的是考虑碳酸盐岩储层,因为与砂岩储层相比,我们对碳酸盐在几何学和流体流动过程方面的理解仍然非常有限。本论文主要由卡塔尔碳酸盐和碳储藏研究中心(QCCSRC)项目完成,主要致力于三维成像技术的开发,该技术可准确表征和预测复杂基准碳酸盐岩和砂岩样品中的流动/传输特性。 ud首先,本文介绍了共聚焦激光扫描显微镜(CLSM)的应用进展,包括对现有样品制备技术的改进以及对具有亚微米分辨率孔隙的非均质岩石样品进行成像的分步指南。已经开发出一种新颖的方法,将CLSM与顺序研磨和抛光相结合,以获得深3D孔尺度图像。这克服了CLSM的传统限制,在CLSM中,单个切片中的深度信息受激光衰减的限制。这种新方法的其他功能包括:高分辨率,任意深度的宽视野;以及与使用2D显微镜的常规连续切片相比,研磨步骤更少;图像质量不会随样本大小而降低,例如在微型计算机断层扫描(micro-CT)成像中。 ud其次,它提出了两个基本问题-体积的代表元素(REV)和尺度依赖性,这些问题通过定性和定量解决方案解决了岩石的不均一性问题,这些非均质性从珠状堆积到沙堆再到砂岩再到碳酸盐岩。 REV是使用凸壳(CH)和洛伦兹系数(LC)的数学概念进行预测的,以同时研究两个宏观特性(在这种情况下为孔隙度和绝对渗透率)之间的关系。 ud然后使用格-玻尔兹曼(LB)和孔隙研究分段的大孔相(大孔)和中间相(微孔)以及相连大孔空间的流体流动特性对体素分辨率的影响网络(PN)建模方法。还应用了数值粗化(放大)算法来减少使用LB和PN方法准确预测流动特性所需的计算能力和时间。 ud最后,已经开发了一种定量方法来预测岩石物理特性,包括孔隙度使用基于图像的分析对长度为120米的X射线医学计算机断层摄影(CT)碳酸盐岩心图像的绝对渗透率和绝对磁导率。使用基于强度灰度值的简单分割和使用Kozeny-Carman方程的绝对渗透率,可以通过简单的分割来计算孔隙率。计算的岩石物理特性已通过实验性塞子数据进行了验证。

著录项

  • 作者

    Shah Saurabh Mahesh Kumar;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号