首页> 外文OA文献 >Modelling Vaporizing Fluid Flow through Porous Media with Applications to Liquefied Natural Gas
【2h】

Modelling Vaporizing Fluid Flow through Porous Media with Applications to Liquefied Natural Gas

机译:通过多孔介质模拟汽化流体流动以及液化天然气的应用

摘要

The problem of vaporizing flow of liquefied natural gas (LNG) through porous or penetrable media has received very little attention despite its importance in assessing the performance and risk-based safety of large membrane tank LNG ships under barrier leakages. In this work, a fluid flow model is proposed and used to analyse the vaporizing flow behaviour of LNG through soil and glass wool porous materials. Furthermore, a modified vaporizing liquid pool model is implemented and used to examine the problem of vaporizing LNG pool on non-penetrable solid substrates. We employed an explicit, finite difference and a fourth-order Runge-Kutta algorithms coded in FORTRAN to respectively solve the flow and pool models. Both models were successfully verified and validated by comparisons to experimental data, analytical solutions, and to predictions of a commercial software (TOUGH2).udResults from the vaporizing flow and pool analyses demonstrate that, for some of the applications considered, the liquid is expected to reach considered threshold depths, seep through the porous layer and contact, contaminate and/or embrittle surrounding natural or engineered systems. For the specific application to LNG cargo containment systems (or cargo tanks), this work has shown that there are safety risks associated with LNG leakage, which are ultra-low temperature of the inner hull, cryogenic damage and subsequent failure of the cargo containment system. Thus, for any LNG membrane cargo containment system to continue to be safe and secure, the various structural members of the insulation system should be designed and equipped with new and improved materials that possesses the necessary mechanical and thermophysical properties to maintain and/or improve the critical temperature standard and low-temperature performance of these systems. Further work should consider additional experimental evidence in order to fully validate and establish that solution predictions by the proposed models are describing the actual physical effects.
机译:尽管液化天然气(LNG)通过多孔介质或可渗透介质蒸发的问题非常重要,但它在评估大型隔膜罐LNG船在障碍物泄漏下的性能和基于风险的安全性方面非常重要。在这项工作中,提出了一种流体流动模型并将其用于分析液化天然气通过土壤和玻璃棉多孔材料的汽化流动行为。此外,实施了改进的汽化液池模型,并用于检验在不可穿透的固体基材上汽化LNG池的问题。我们采用显式,有限差分和FORTRAN编码的四阶Runge-Kutta算法分别求解流量和池模型。通过与实验数据,分析解决方案以及商业软件(TOUGH2)的预测进行比较,成功地验证和验证了这两种模型。 ud蒸发流和池分析的结果表明,对于某些考虑的应用,期望使用液体为了达到所考虑的阈值深度,渗入多孔层并接触,污染和/或脆化周围的自然或工程系统。对于LNG货物围护系统(或液货舱)的特定应用,这项工作表明,与LNG泄漏相关的安全风险包括内壳的超低温,低温损坏以及货物围护系统的后续故障。 。因此,为使任何液化天然气膜货物围护系统继续保持安全可靠,应设计隔热系统的各个结构部件,并为其配备经过改良的新型材料,这些材料应具有必要的机械和热物理特性,以维持和/或改善隔热性能。这些系统的临界温度标准和低温性能。进一步的工作应考虑其他实验证据,以便充分验证并确定所提出的模型的解决方案预测正在描述实际的物理效应。

著录项

  • 作者

    Okafor Emeka Joachin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号