首页> 外文OA文献 >Simultaneous temperature and velocity imaging in turbulent flows using thermographic phosphor tracer particles
【2h】

Simultaneous temperature and velocity imaging in turbulent flows using thermographic phosphor tracer particles

机译:使用热成像荧光粉示踪粒子在湍流中同时进行温度和速度成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Combined measurements of velocity and temperature are essential to improve our understanding of turbulent flows involving heat transfer or chemical reactions. However, performing such measurements is a very difficult task. The presence of particles, which are seeded into the flow as tracers for the flow velocity, strongly interferes with classic optical thermometry techniques such as Rayleigh scattering. A review of the current approaches shows that a technique that can measure both quantities simultaneously, in two dimensions and over a wide range of flow conditions is yet to be found. An alternative approach to this problem, presented in this dissertation, uses tracer particles made of temperature-sensitive luminescent material, which are capable of also indicating the gas temperature. Thermographic phosphors are shown to be clear candidates for this concept. Made of ceramic material, they are chemically inert and survive low and high temperature environments. The temperature has a strong influence on the luminescence process allowing various ways to perform thermometry Currently, phosphors are used for surface temperature measurements, but a phosphor suitable for two-dimensional measurements in turbulent flows must meet stringent requirements in terms of luminescence properties. In this respect, the temperature dependence of the emission spectrum, a high quantum efficiency and a short lifetime are essential. Micrometre-size refractory particles are widely used for PIV and are able to follow the fluid motion without slip for a wide range of fluid velocities and turbulence intensities However, for the concept to be valid, the ability of phosphor particles to follow fluctuations in the gas temperature must be demonstrated. Using theoretical heat transfer models, it is shown that the temperature response of a particle is faster than its velocity response irrespective of the gas temperature. These response times have a quadratic dependence on the particle diameter so only small particles can be used. Various aspects of the practical implementation of the flow measurement concept, such as the excitation, particle seeding, detection, image processing and calibration, are considered, tested and developed, with the objective of providing high signal levels and to permit precise, accurate, and highly resolved measurements. In order to determine whether a sufficient signal level can be obtained for a reasonable particle seeding density, i.e. that does not have any effect on the gas properties, a particle counting tool is implemented. This system is used to characterise the phosphorescence intensity of 2 μm diameter particles made of BAM:Eu2+, a phosphor with very advantageous properties for flow measurements. It is shown that a seeding density comparable to that of conventional PIV and relatively small laser fluence provide sufficient signal levels for precise single shot measurements.udThe technique is demonstrated in a turbulent heated jet from 300 K to 700 K. Single shot measurements of temperature and velocity are presented with a single-shot, single-pixel temperature precision of 2-5 %, a temperature accuracy of 2%, and a spatial resolution of 400 μm.udAn additional concept is explored. By seeding two streams with different materials, the phosphorescence signal can be used to visualise the turbulent mixing between the streams. This concept is demonstrated in the same turbulent heated jet.udFuture developments and applications of the thermographic phosphor tracer particle concept are discussed. Owing to the very wide variety of thermographic phosphors, the results presented in this dissertation constitute a solid foundation for the expansion of this promising technique.
机译:速度和温度的组合测量对于增进我们对涉及传热或化学反应的湍流的理解至关重要。然而,执行这样的测量是非常困难的任务。粒子作为流动的示踪剂注入到流中的存在,强烈干扰了经典的光学测温技术,例如瑞利散射。对当前方法的回顾表明,尚未找到一种可以同时在二维和大范围的流动条件下测量两个量的技术。本文提出的解决该问题的另一种方法是使用由对温度敏感的发光材料制成的示踪剂颗粒,该示踪剂颗粒也可以指示气体温度。热成像磷光体被证明是该概念的明确候选者。它们由陶瓷材料制成,具有化学惰性,可在低温和高温环境下使用。温度对发光过程有很强的影响,允许使用各种方法进行测温目前,磷光体用于表面温度测量,但是适用于湍流二维测量的磷光体必须满足严格的发光性能要求。在这方面,发射光谱的温度依赖性,高量子效率和短寿命是必不可少的。微米级的耐火颗粒广泛用于PIV,能够在很宽的流体速度和湍流强度下跟随流体运动而不会打滑。但是,对于这一概念有效的是,磷光体颗粒跟随气体波动的能力温度必须证明。使用理论传热模型,表明与气体温度无关,颗粒的温度响应快于其速度响应。这些响应时间对粒径具有二次依赖性,因此只能使用小颗粒。考虑,测试和开发了流量测量概念实际实施的各个方面,例如激励,颗粒播种,检测,图像处理和校准,目的是提供高信号电平并允许精确,准确和高度解析的测量。为了确定对于合理的粒子播种密度是否可以获得足够的信号水平,即对气体特性没有任何影响,实现了一种粒子计数工具。该系统用于表征由BAM:Eu2 +制成的直径为2μm的颗粒的磷光强度,BAM:Eu2 +是一种对流量测量具有非常有利性能的磷光体。结果表明,与常规PIV相当的播种密度和相对较小的激光能量密度提供了足够的信号电平,可以进行精确的单次测量。 ud这项技术在300 K至700 K的湍流加热射流中得到了证明。温度的单次测量呈现的速度和速度具有2-5%的单次单像素温度精度,2%的温度精度和400μm的空间分辨率。 ud还探讨了另一个概念。通过用不同的材料播种两个流,磷光信号可用于可视化流之间的湍流混合。在同一个湍流加热射流中证明了这一概念。 ud讨论了热成像荧光粉示踪剂粒子概念的未来发展和应用。由于热成像荧光粉种类繁多,因此本文提出的结果为扩展该有前途的技术奠定了坚实的基础。

著录项

  • 作者

    Fond Benoit;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号