首页> 外文OA文献 >Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems
【2h】

Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

机译:用于可穿戴EEG系统的睡眠阶段和事件自动检测的低复杂度算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation.udMethods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18μm process node technology.udResults: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.
机译:目的:睡眠障碍的诊断是一项昂贵的手术,需要在受控环境中进行一项称为多导睡眠图(PSG)的睡眠研究。这项研究使用脑电图(EEG),眼电图(EOG)和肌电图(EMG)信号监测患者的神经,眼睛和肌肉活动,然后将其计入不同的睡眠阶段。家用PSG通常被认为是临床PSG的替代方案,以使其更易于使用,但是它仍然需要患者使用笨重的系统,该系统具有多个记录通道,需要精确放置。本文提出了一种利用EEG单通道的可穿戴式睡眠分期系统。为了实现这样的系统,本文提出了从EEG(通常使用EMG / EOG检测)进行REM睡眠检测的新颖功能,使用单个EEG通道的低复杂度自动睡眠分级算法及其完整的集成电路实现。 udMethods:在8-16 Hz频带中,频谱边缘频率(SEF)在95%和50%之间的差异显示出对REM睡眠阶段的检测能力高。此功能与单通道EEG的其他频谱功能一起使用,并由状态机控制的一组决策树用于分类。完整算法的硬件是使用低功耗技术设计的,并使用0.18μm工艺节点技术在芯片上实现。 ud结果:使用来自一个EEG通道的SEF功能可正确检测到83%的REM睡眠时期。基于上下文感知决策树的自动睡眠登台算法在大型数据集上的准确性高达79%。它的硬件实现,也是任何睡眠登台算法的第一个完整的电路级实现,其准确性达到98.7%,具有在完全可穿戴的睡眠系统中使用的巨大潜力。

著录项

  • 作者

    Imtiaz Syed Anas;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号