首页> 外文OA文献 >In CARSWe Trust: How Context-Aware Recommendations Affect Customers’ Trust And Other Business Performance Measures Of Recommender Systems
【2h】

In CARSWe Trust: How Context-Aware Recommendations Affect Customers’ Trust And Other Business Performance Measures Of Recommender Systems

机译:在CaRsWe Trust中:上下文意识建议如何影响推荐系统的客户信任和其他业务绩效测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most of the work on Context-Aware Recommender Systems (CARSes) has focused on demonstrating that the contextual information leads to more accurate recommendations and on developing efficient recommendation algorithms utilizing this additional contextual information. Little work has been done, however, on studying how much the contextual information affects purchasing behavior and trust of customers. In this paper, we study how including context in recommendations affects customers’ trust, sales and other crucial business-related performance measures. To do this, we performed a live controlled experiment with real customers of a commercial European online publisher. We delivered content-based recommendations and context-aware recommendations to two groups of customers and to a control group. We measured the recommendations’ accuracy and diversification, how much customers spent purchasing products during the experiment, quantity and price of their purchases and the customers’ level of trust. We aim at demonstrating that accuracy and diversification have only limited direct effect on customers’ purchasing behavior, but they affect trust which drives the customer purchasing behavior. We also want to prove that CARSes can increase both recommendations’ accuracy and diversification compared to other recommendation engines. This means that including contextual information in recommendations not only increases accuracy, as was demonstrated in previous studies, but it is crucial for improving trust which, in turn, can affect other business-related performance measures, such as company’s sales.
机译:关于上下文感知推荐器系统(CARSes)的大多数工作都集中于证明上下文信息导致更准确的推荐,并致力于利用这些附加的上下文信息开发有效的推荐算法。但是,在研究上下文信息对购买行为和客户信任有多大影响方面,还没有完成任何工作。在本文中,我们研究了在建议中包含上下文会如何影响客户的信任度,销售额以及其他与业务相关的关键绩效指标。为此,我们与一家欧洲商业在线发行商的真实客户进行了现场控制实验。我们向两组客户和一个对照组提供了基于内容的建议和上下文相关的建议。我们评估了建议的准确性和多样性,实验期间客户花了多少钱购买产品,购买的数量和价格以及客户的信任度。我们旨在证明准确性和多样化对客户的购买行为仅具有有限的直接影响,但它们会影响信任度,从而驱动客户的购买行为。我们还想证明,与其他推荐引擎相比,CARSes可以提高推荐的准确性和多样性。这意味着在建议中包含上下文信息不仅可以提高准确性(如先前的研究所示),而且对于提高信任度至关重要,而信任度又会影响其他与业务相关的绩效指标,例如公司的销售额。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号