首页> 外文OA文献 >Predicting turnaround time reductions of the diagnostic track in the histopathology laboratory using mathematical modelling
【2h】

Predicting turnaround time reductions of the diagnostic track in the histopathology laboratory using mathematical modelling

机译:使用数学建模预测组织病理学实验室中诊断轨迹的周转时间减少

摘要

Background Pathology departments face a growing volume of more and more complex testing in an era where healthcare costs tend to explode and short turnaround times (TATs) are expected. In contrast, the histopathology workforce tends to shrink, so histopathology employees experience high workload during their shifts. This points to the need for efficient planning of activities in the histopathology laboratory, to ensure an equal division of workload and low TATs, at minimum costs. Methods The histopathology laboratory of a large academic hospital in The Netherlands was analysed using mathematical modelling. Data were collected from the Laboratory Management System to determine laboratory TATs and workload performance during regular working hours. A mixed integer linear programme (MILP) was developed to model the histopathology processes and to measure the expected performance of possible interventions in terms of TATs and spread of workload. Results The MILP model predicted that tissue processing at specific moments during the day, combined with earlier starting shifts, can result in up to 25% decrease of TATs, and a more equally spread workload over the day. Conclusions Mathematical modelling can help to optimally organise the workload in the histopathology laboratory by predicting the performance of possible interventions before actual implementation. The interventions that were predicted by the model to have the highest performance have been implemented in the histopathology laboratory of University Medical Center Utrecht. Further research should be executed to collect empirical evidence and evaluate the actual impact on TAT, quality of work and employee stress levels.
机译:背景技术在医疗成本趋于爆炸式增长且预计周转时间(TAT)较短的时代,病理部门将面临越来越多的越来越复杂的测试。相比之下,组织病理学人员队伍趋于萎缩,因此组织病理学员工在轮班期间会承受较高的工作量。这表明需要在组织病理学实验室中有效地计划活动,以最低的成本确保工作量的均等和低TAT。方法使用数学模型分析了荷兰一家大型学术医院的组织病理学实验室。从实验室管理系统收集数据,以确定常规工作时间内的实验室TAT和工作量绩效。开发了混合整数线性程序(MILP),以对组织病理学过程进行建模,并根据TAT和工作量的分布来衡量可能的干预措施的预期效果。结果MILP模型预测,一天中特定时刻的组织处理,加上更早的开始班次,可导致TAT减少多达25%,并且一天中的工作量分布更平均。结论数学建模可以通过在实际实施之前预测可能的干预措施的执行情况来帮助组织病理学实验室中的工作量最佳化。该模型所预测的具有最高性能的干预措施已在乌得勒支大学医学中心的组织病理学实验室中实施。应该进行进一步的研究以收集经验证据,并评估对TAT,工作质量和员工压力水平的实际影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号