首页> 外文OA文献 >Decision Trees for Hand-Written Arabic Words Recognition
【2h】

Decision Trees for Hand-Written Arabic Words Recognition

机译:手写阿拉伯语单词识别的决策树

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a system based on decision trees for the off-line recognition of handwritten Arabic words. The aim of this work is to design and implement a system for the recognition of Algerian city names (wilayas), based on the symbolic learning decision tree approach. After the acquisition step, images are preprocessed and structural features (sub-words, loops, ascenders, descenders and diacritical dots) are extracted. These features, combined with the corresponding classes are presented as input to a learning process which gives as a result a decision tree that can be used for the classification step in our recognition system. The resulting tree can be expressed more explicitly as a rule base for words classification. These rules are not based on theoretical information, but on training samples. Our experimental recognition results are encouraging and confirm our expectation that the use of structural features and symbolic learning is an interesting issue of wholistic handwritten words recognition.
机译:在本文中,我们提出了一种基于决策树的离线识别阿拉伯语手写单词的系统。这项工作的目的是基于符号学习决策树方法,设计并实现一个用于识别阿尔及利亚城市名称(wilayas)的系统。采集步骤之后,对图像进行预处理,并提取结构特征(子词,循环,上升,下降和变音点)。这些特征与相应的类别相结合,作为输入到学习过程中,从而提供决策树,该决策树可用于我们的识别系统中的分类步骤。可以将生成的树更明确地表示为单词分类的规则库。这些规则不是基于理论信息,而是基于训练样本。我们的实验性识别结果令人鼓舞,并证实了我们的期望,即结构特征和符号学习的使用是整体手写单词识别的一个有趣问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号