首页> 外文OA文献 >An integrated online adaptive state of charge estimation approach of high-power lithium-ion battery packs.
【2h】

An integrated online adaptive state of charge estimation approach of high-power lithium-ion battery packs.

机译:大功率锂离子电池组的集成在线自适应充电状态估计方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel online adaptive state of charge (SOC) estimation method is proposed, aiming to characterize the capacity state of all the connected cells in lithium-ion battery (LIB) packs. This method is realized using the extended Kalman filter (EKF) combined with Ampere-hour (Ah) integration and open circuit voltage (OCV) methods, in which the time-scale implementation is designed to reduce the computational cost and accommodate uncertain or time-varying parameters. The working principle of power LIBs and their basic characteristics are analysed by using the combined equivalent circuit model (ECM), which takes the discharging current rates and temperature as the core impacts, to realize the estimation. The original estimation value is initialized by using the Ah integral method, and then corrected by measuring the cell voltage to obtain the optimal estimation effect. Experiments under dynamic current conditions are performed to verify the accuracy and the real-time performance of this proposed method, the analysed result of which indicates that its good performance is in line with the estimation accuracy and real-time requirement of high-power LIB packs. The proposed multimodel SOC estimation method may be used in the real-time monitoring of the high-power LIB pack dynamic applications for working state measurement and control.
机译:提出了一种新颖的在线自适应充电状态(SOC)估计方法,旨在表征锂离子电池(LIB)电池组中所有连接电池的容量状态。该方法是结合扩展的卡尔曼滤波器(EKF),安培小时(Ah)积分和开路电压(OCV)方法来实现的,其中时标实现旨在减少计算成本并适应不确定性或时间问题。变化的参数。通过以放电电流速率和温度为核心影响的组合等效电路模型(ECM),分析了功率LIB的工作原理及其基本特性。原始估计值通过使用Ah积分方法进行初始化,然后通过测量单元电压进行校正以获得最佳估计效果。在动态电流条件下进行了实验,验证了该方法的准确性和实时性,分析结果表明,该方法的良好性能符合大功率LIB电池组的估计精度和实时性要求。 。所提出的多模型SOC估计方法可用于对大功率LIB电池组动态应用进行实时监控,以进行工作状态测量和控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号