首页> 外文OA文献 >Projection Bank: From High-Dimensional Data to Medium-Length Binary Codes
【2h】

Projection Bank: From High-Dimensional Data to Medium-Length Binary Codes

机译:投影库:从高维数据到中等长度的二进制代码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, very high-dimensional feature representations, e.g., Fisher Vector, have achieved excellent performance for visual recognition and retrieval. However, these lengthy representations always cause extremely heavy computational and storage costs and even become unfeasible in some large-scale applications. A few existing techniques can transfer very high-dimensional data into binary codes, but they still require the reduced code length to be relatively long to maintain acceptable accuracies. To target a better balance between computational efficiency and accuracies, in this paper, we propose a novel embedding method called Binary Projection Bank (BPB), which can effectively reduce the very high-dimensional representations to medium-dimensional binary codes without sacrificing accuracies. Instead of using conventional single linear or bilinear projections, the proposed method learns a bank of small projections via the max-margin constraint to optimally preserve the intrinsic data similarity. We have systematically evaluated the proposed method on three datasets: Flickr 1M, ILSVR2010 and UCF101, showing competitive retrieval and recognition accuracies compared with state-of-the-art approaches, but with a significantly smaller memory footprint and lower coding complexity.
机译:近来,非常高维的特征表示,例如Fisher Vector,已经在视觉识别和检索方面取得了优异的性能。但是,这些冗长的表示总是导致极高的计算和存储成本,甚至在某些大规模应用中变得不可行。现有的一些技术可以将非常高维的数据转换为二进制代码,但是它们仍然需要减小的代码长度,使其相对较长才能保持可接受的精度。为了在计算效率和精度之间取得更好的平衡,本文提出了一种新的嵌入方法,称为二元投影银行(BPB),它可以在不牺牲精度的情况下有效地将超高维表示简化为中维二进制代码。代替使用常规的单线性或双线性投影,所提出的方法通过最大余量约束来学习一堆小投影,以最佳地保持固有数据相似性。我们已经在Flickr 1M,ILSVR2010和UCF101这三个数据集上系统地评估了该方法,与最先进的方法相比,该方法具有竞争性的检索和识别准确性,但内存占用量却明显减少,编码复杂度较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号