首页> 外文OA文献 >Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification
【2h】

Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification

机译:结合低维小波特征和支持向量机进行心律失常的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. Feature extraction is an important prerequisite prior to classification since it provides the classifier with input features, and the performance of classifier depends significantly on the quality of these features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. It employs wavelet multi-resolution analysis to extract time-frequency domain features and then applies principle component analysis to reduce the dimension of the feature vector. In classification, 12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one support vector machine, which is conducted in form of 10-fold cross validation with beat-based and record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, using the record-based training scheme.
机译:自动特征提取和分类是异常心电图心跳识别中的两个主要任务。特征提取是分类之前的重要先决条件,因为它为分类器提供了输入特征,并且分类器的性能在很大程度上取决于这些特征的质量。这项研究开发了一种有效的方法来提取低维ECG搏动特征向量。它采用小波多分辨率分析来提取时频域特征,然后应用主成分分析来减小特征向量的维数。在分类中,将表征六种类型心跳的12个元素特征向量用作一对多支持向量机的输入,该向量以基于心律和基于记录的训练方案的10倍交叉验证的形式进行。通过基于MIT-BIH心律失常数据库的总共107049次心跳测试,我们的方法使用基于心跳的训练方案分别获得了99.09%,99.82%和99.70%的平均灵敏度,特异性和准确性,分别达到44.40%,88.88%和88.88%和基于记录的培训计划分别占81.47%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号