首页> 外文OA文献 >Personalizing automated image annotation using cross-entropy
【2h】

Personalizing automated image annotation using cross-entropy

机译:使用交叉熵个性化自动图像注释

摘要

Annotating the increasing amounts of user-contributed images in a personalized manner is in great demand. However, this demand is largely ignored by the mainstream of automated image annotation research. In this paper we aim for personalizing automated image annotation by jointly exploiting personalized tag statistics and content-based image annotation. We propose a cross-entropy based learning algorithm which personalizes a generic annotation model by learning from a user’s multimedia tagging history. Using cross-entropy-minimization basedMonte Carlo sampling, the proposed algorithm optimizes the personalization process in terms of a performance measurement which can be flexibly chosen. Automatic image annotation experiments with 5,315 realistic users in the social web show that the proposed method compares favorably to a generic image annotation method and a method using personalized tag statistics only. For 4,442 users the performance improves, where for 1,088 users the absolute performance gain is at least 0.05 in terms of average precision. The results show the value of the proposed method.
机译:强烈要求以个性化的方式注释用户贡献的图像数量的增加。但是,这种需求在很大程度上被自动化图像注释研究的主流所忽略。在本文中,我们旨在通过联合利用个性化标签统计信息和基于内容的图像注释来个性化自动图像注释。我们提出了一种基于交叉熵的学习算法,该算法通过从用户的多媒体标签历史中进行学习来个性化通用注释模型。使用基于交叉熵最小化的蒙特卡洛采样,该算法根据可以灵活选择的性能度量来优化个性化过程。在社交网络中对5,315名现实用户进行的自动图像注释实验表明,该方法与通用图像注释方法和仅使用个性化标签统计信息的方法相比具有优势。对于4,442个用户,性能有所提高,对于1,088个用户,绝对性能的提高至少为0.05。结果表明了该方法的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号