首页> 外文OA文献 >ADC multi-site test based on a pre-test with digital input stimulus
【2h】

ADC multi-site test based on a pre-test with digital input stimulus

机译:基于带数字输入激励的预测试的ADC多站点测试

摘要

This paper describes two novel algorithms based on the time-modulo reconstruction method intended for detection of the parametric faults in analogue-to-digital converters (ADC). In both algorithms, a pulse signal, in its slightly adapted form to allow sufficient time for converter settling, is taken as the test stimulus relieving the burden placed on the accuracy requirement of the excitation source. Instead of calculating the accurate conventional dynamic and static parameters, a signature result is obtained through the analysis of the output data in the time domain. The basic concept of the algorithms is the evaluation on the performance of ADCs by the comparison of the similarity of the output waveforms. The multi-site test is expensive for traditional specification-based tests of ADCs, as high quality analogue data generators are required. Based on these two algorithms, this paper proposes a solution for this problem. The objective of the test scheme is not to completely replace traditional specification-based tests, but to provide a reliable method for early identification of excessive parameter variations in production test that allows quickly discarding of most of the faulty circuits before performing a conventional test. The efficiency of the methods is validated on an industrial 12-bit pipelined ADC both in simulations and in measurements.
机译:本文介绍了两种基于时间模重构方法的新颖算法,旨在检测模数转换器(ADC)中的参数故障。在这两种算法中,脉冲信号以其稍微适应的形式允许有足够的时间用于转换器稳定,以此作为测试激励来减轻激励源精度要求上的负担。通过计算时域中的输出数据,可以获得签名结果,而不是计算准确的常规动态和静态参数。该算法的基本概念是通过比较输出波形的相似性来评估ADC的性能。对于传统的基于ADC的规范测试而言,多站点测试非常昂贵,因为需要高质量的模拟数据生成器。基于这两种算法,本文提出了针对该问题的解决方案。测试方案的目的不是要完全取代传统的基于规范的测试,而是要提供一种可靠的方法,用于早期识别生产测试中过多的参数变化,从而可以在执行常规测试之前迅速丢弃大部分故障电路。该方法的效率已在工业12位流水线ADC上进行了仿真和测量验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号