首页> 外文OA文献 >Visual Exploration of Classification Models for Risk Assessment
【2h】

Visual Exploration of Classification Models for Risk Assessment

机译:风险评估分类模型的可视化探索

摘要

In risk assessment applications well informed decisions are made based on huge amounts of multi-dimensional data. In many domains not only the risk of a wrong decision, but in particular the trade-off between the costs of possible decisions are of utmost importance. In this paper we describe a framework tightly integrating interactive visual exploration with machine learning to support the decision making process. The proposed approach uses a series of interactive 2D visualizations of numeric and ordinal data combined with visualization of classification models. These series of visual elements are further linked to the classifier's performance visualized using an interactive performance curve. An interactive decision point on the performance curve allows the decision maker to steer the classification model and instantly identify the critical, cost changing data elements, in the various linked visualizations. The critical data elements are represented as images in order to trigger associations related to the knowledge of the expert. In this context the data visualization and classification results are not only linked together, but are also linked back to the classification model. Such a visual analytics framework allows the user to interactively explore the costs of his decisions for different settings of the model and accordingly use the most suitable classification model and make more informed and reliable decisions. A case study on data from the Forensic Psychiatry domain reveals the usefulness of the suggested approach.
机译:在风险评估应用中,基于大量多维数据做出明智的决策。在许多领域中,不仅错误决策的风险,而且尤其是可能决策成本之间的权衡是最重要的。在本文中,我们描述了一个框架,该框架将交互式视觉探索与机器学习紧密集成在一起,以支持决策过程。所提出的方法使用了一系列的交互式2D数字和序数数据可视化以及分类模型的可视化。这些视觉元素系列进一步与使用交互式性能曲线可视化的分类器性能相关联。性能曲线上的交互式决策点使决策者可以控制分类模型,并在各种链接的可视化视图中立即识别关键的,成本变化的数据元素。关键数据元素表示为图像,以触发与专家知识有关的关联。在这种情况下,数据可视化和分类结果不仅链接在一起,而且还链接回分类模型。这种可视化分析框架允许用户以交互方式探索其对于模型的不同设置的决策成本,并因此使用最合适的分类模型并做出更明智和可靠的决策。对法医精神病学领域的数据进行的案例研究揭示了所建议方法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号