首页> 外文OA文献 >A survey of techniques for internet traffic classification using machine learning
【2h】

A survey of techniques for internet traffic classification using machine learning

机译:基于机器学习的网络流量分类技术综述

摘要

The research community has begun looking for IP traffic classification techniques that do not rely on 'well known' TCP or UDP port numbers, or interpreting the contents of packet payloads. New work is emerging on the use of statistical traffic characteristics to assist in the identification and classification process. This survey paper looks at emerging research into the application of Machine Learning (ML) techniques to IP traffic classification---an inter-disciplinary blend of IP networking and data mining techniques. We provide context and motivation for the application of ML techniques to IP traffic classification, and review 18 significant works that cover the dominant period from 2004 to early 2007. These works are categorized and reviewed according to their choice of ML strategies and primary contributions to the literature. We also discuss a number of key requirements for the employment of ML-based traffic classifiers in operational IP networks, and qualitatively critique the extent to which the reviewed works meet these requirements. Open issues and challenges in the field are also discussed.
机译:研究团体已开始寻找不依赖于“众所周知的” TCP或UDP端口号的IP流量分类技术,也不需要解释数据包有效载荷的内容。关于使用统计流量特征来协助识别和分类过程的新工作正在涌现。这份调查报告着眼于机器学习(ML)技术在IP流量分类中的应用的新兴研究-IP网络和数据挖掘技术的跨学科混合。我们提供了将ML技术应用于IP流量分类的背景和动机,并回顾了涵盖2004年至2007年初这一主导时期的18篇重要著作。这些著作根据其ML战略的选择和对ML策略的主要贡献进行了分类和审查。文献。我们还讨论了在运营IP网络中使用基于ML的流量分类器的一些关键要求,并且定性地批评了审查的作品满足这些要求的程度。还讨论了该领域的未解决问题和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号