首页> 外文OA文献 >GA-Based DetectionlEvaluation Method of Minute Defects on Metal Products for On-Line Inspection
【2h】

GA-Based DetectionlEvaluation Method of Minute Defects on Metal Products for On-Line Inspection

机译:基于遗传算法的在线检测金属制品微小缺陷检测评价方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this research, a method to detect minute flaws on metal parts is proposed to remove the defective parts before assembling in a factory. The input gray-scale images of metal parts are used directly to recognize the flaw without any image conversion to shorten the recognition time. The recognition problem to find defects and detect its position on the metal parts is converted here to another problem to search for the maximum peak and the variables giving the peak. Then the recognition problem can be treated as optimization problem, and this conversion allow us to utilize the high performances of GAin the optimization. The effectiveness of proposed method is studied on standing points of the recognition speed and the quantitative recognition ability.
机译:在这项研究中,提出了一种检测金属零件上微小缺陷的方法,以便在工厂组装之前去除缺陷零件。输入的金属零件灰度图像直接用于识别缺陷,而无需任何图像转换以缩短识别时间。查找缺陷并检测其在金属零件上的位置的识别问题在此转换为另一个问题,以搜索最大峰和给出峰的变量。然后将识别问题视为优化问题,这种转换使我们能够在优化中利用GA的高性能。从识别速度和定量识别能力的观点出发,研究了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号