首页> 外文OA文献 >Propriétés électriques et modélisation des dispositifs MOS avanvés : dispositif FD-SOI, transistors sans jonctions (JLT) et transistor à couche mince à semi-conducteur d'oxyde amorphe. Electrical properties and modeling of advanced MOS devices : FD-SOI device, Junctionless Transistor, and Amorphous-Oxide-Semiconductor Thin Film Transistor
【2h】

Propriétés électriques et modélisation des dispositifs MOS avanvés : dispositif FD-SOI, transistors sans jonctions (JLT) et transistor à couche mince à semi-conducteur d'oxyde amorphe. Electrical properties and modeling of advanced MOS devices : FD-SOI device, Junctionless Transistor, and Amorphous-Oxide-Semiconductor Thin Film Transistor

机译:支持和解释mOsavanvés:dispositif FD-sOI,transistor sans jonctions(JLT)ettransistoràcoucheminceàlele-conducteur d'oxyde amorphe。高级mOs器件的电气特性和建模:FD-sOI器件,无结晶体管和非晶氧化物半导体薄膜晶体管

摘要

Novel advanced metal-oxide semiconductor (MOS) devices such as fully-depleted-silicon-on-insulator (FD-SOI) Tri-gate transistor, junctionless transistor, and amorphous-oxide-semiconductor thin film transistor were developed for continuing down-scaling trend and extending the functionality of CMOS technology, for example, the transparency and the flexibility. In this dissertation, the electrical characteristics and modeling of these advanced MOS devices are presented and they are analyzed. The sidewall mobility trends with temperature in multi-channel tri-gate MOSFET showed that the sidewall conduction is dominantly governed by surface roughness scattering. The degree of surface roughness scattering was evaluated with modified mobility degradation factor. With these extracted parameters, it was noted that the effect of surface roughness scattering can be higher in inversion-mode nanowire-like transistor than that of FinFET. The series resistance of multi-channel tri-gate MOSFET was also compared to planar device having same channel length and channel width of multi-channel device. The higher series resistance was observed in multi-channel tri-gate MOSFET. It was identified, through low temperature measurement and 2-D numerical simulation, that it could be attributed to the variation of doping concentration in the source/drain extension region in the device. The impact of channel width on back biasing effect in n-type tri-gate MOSFET on SOI material was also investigated. The suppressed back bias effects was shown in narrow device (Wtop_eff = 20 nm) due to higher control of front gate on overall channel, compared to the planar device (Wtop_eff = 170 nm). The variation of effective mobility in both devices was analyzed with different channel interface of the front channel and the back channel. In addition, 2-D numerical simulation of the the gate-to-channel capacitance and the effective mobility successfully reconstructed the experimental observation. The model for the effective mobility was inherited from two kinds of mobility degradations, i.e. different mobility attenuation along lateral and vertical directions of channel and additional mobility degradation in narrow device due to the effect of sidewall mobility. With comparison to inversion-mode (IM) transistors, the back bias effect on tri-gate junctionless transistors (JLTs) also has been investigated using experimental results and 2-D numerical simulations. Owing to the different conduction mechanisms, the planar JLT shows more sensitive variation on the performance by back biasing than that of planar IM transistors. However, the back biasing effect is significantly suppressed in nanowire-like JLTs, like in extremely narrow IM transistors, due to the small portion of bulk neutral channel and strong sidewall gate controls. Finally, the characterization method was comprehensively applied to a-InHfZnO (IHZO) thin film transistor (TFT). The series resistance and the variation of channel length were extracted from the transfer curve. And mobility values extracted with different methods such as split C-V method and modified Y-function were compared. The static characteristic evaluated as a function of temperature shows the degenerate behavior of a-IHZO TFT inversion layer. Using subthreshold slope and noise characteristics, the trap information in a-IHZO TFT was also obtained. Based on experimental results, a numerical model for a-IHZO TFT was proposed, including band-tail states conduction and interface traps. The simulated electrical characteristics were well-consistent to the experimental observations. For the practical applications of novel devices, the electrical characterization and proper modeling are essential. These attempts shown in the dissertation will provides physical understanding for conduction of these novel devices.
机译:开发了新型先进的金属氧化物半导体(MOS)器件,例如完全耗尽绝缘体上硅(FD-SOI)三栅晶体管,无结晶体管和非晶氧化物半导体薄膜晶体管,以继续缩小尺寸趋势和扩展CMOS技术的功能,例如透明度和灵活性。本文介绍了这些先进MOS器件的电学特性和建模,并对它们进行了分析。多通道三栅MOSFET的侧壁迁移率随温度变化趋势表明,侧壁导电主要受表面粗糙度散射支配。用改进的迁移率降低因子评估表面粗糙度的散射程度。利用这些提取的参数,注意到在反转模式纳米线状晶体管中,表面粗糙度散射的影响可能比FinFET高。还将多通道三栅MOSFET的串联电阻与具有与多通道器件相同的沟道长度和沟道宽度的平面器件进行了比较。在多通道三栅MOSFET中观察到较高的串联电阻。通过低温测量和二维数值模拟,可以确定这归因于器件中源/漏扩展区中掺杂浓度的变化。还研究了沟道宽度对n型三栅MOSFET在SOI材料上的反向偏置效应的影响。与平面器件(Wtop_eff = 170 nm)相比,由于在整个通道上对前栅极的控制更高,因此在窄器件(Wtop_eff = 20 nm)中显示了抑制的反向偏置效应。使用前通道和后通道的不同通道接口分析了这两种设备中有效迁移率的变化。此外,栅极到通道电容和有效迁移率的二维数值模拟成功地重建了实验观察结果。有效迁移率的模型继承了两种迁移率降级,即沿侧壁的横向和垂直方向不同的迁移率衰减,以及由于侧壁迁移率的影响而导致的窄器件中额外的迁移率降级。与反相模式(IM)晶体管相比,还使用实验结果和二维数值模拟研究了三栅极无结晶体管(JLT)的反向偏置效应。由于不同的导电机制,平面JLT通过反向偏置比平面IM晶体管在性能上表现出更为敏感的变化。然而,由于体中性沟道的小部分和强大的侧壁栅极控制,在纳米线状的JLT中(如在极窄的IM晶体管中),反向偏置效应得到了显着抑制。最后,该表征方法被全面应用于a-InHfZnO(IHZO)薄膜晶体管(TFT)。从传输曲线中提取了串联电阻和沟道长度的变化。并比较了用不同方法(如分割C-V方法和改进的Y函数)提取的迁移率值。根据温度评估的静态特性显示了a-IHZO TFT反转层的退化行为。利用亚阈值斜率和噪声特性,还获得了a-IHZO TFT中的陷阱信息。基于实验结果,提出了a-IHZO TFT的数值模型,包括带尾态传导和界面陷阱。模拟的电学特性与实验结果非常吻合。对于新型设备的实际应用,电气特性和正确的建模至关重要。论文中的这些尝试将为这些新颖器件的传导提供物理理解。

著录项

  • 作者

    Park So Jeong;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类
  • 入库时间 2022-08-20 21:06:34

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号