首页> 外文OA文献 >Imagerie sismique 4D quantitative en milieux complexes par l'inversion 2D de forme d'onde complète
【2h】

Imagerie sismique 4D quantitative en milieux complexes par l'inversion 2D de forme d'onde complète

机译:二维全波形反演在复杂介质中定量4D地震成像

摘要

Time-lapse monitoring is the process of acquiring and analysing multiple seismic surveys, repeatedat the same place at different time periods. This seismic technique, called 4D becauseof the integration time in the construction of images, allows detection and estimation of thesubsurface parameter variations occured through a time evolution. Particularly, in industries,the monitoring can improve our understanding of a producing oil/gas reservoir and CO2 storagesite. Analyzing the time-lapse seismics can help to better manage production programsof reservoirs. In addition, repeated surveys can monitor the evolution of injected fluid frontsand can permit to optimize injection programs which are considered for enhanced oil recovery(EOR) techniques.Several methods have been developed for time-lapse imaging using seismic wave information.In my thesis, I show that full waveform inversion (FWI) can be used for time-lapseimaging, since this method delivers high-resolution quantitative seismic images. It is a promisingtechnique to recover small variations of macro-scale physical properties of the subsurface.In time-lapse applications, several sources of prior information are often available and shouldbe used to increase the image reliability and its resolution. I have introduced this informationthrough a definition of a prior model in a classical FWI approach by also considering a prioruncertainty model. In addition, I have suggested a dynamic weighting to reduce the importanceof these prior models in the final convergence. In realistic synthetic cases, I have shownhow the prior model can reduce the sensitivity of FWI to a less accurate initial model. It istherefore possible to obtain a highly accurate baseline model for 4D imaging.Once the baseline reconstruction is achieved, several strategies can be used to assess thephysical parameter changes. We can make two independent reconstructions of baseline andmonitor models and make subtraction of the two reconstructed models. This strategy is calledparallel difference. The sequential difference strategy inverts the monitor dataset starting fromthe recovered baseline model, and not from the model used initially. Finally, the doubledifferencestrategy inverts the difference data between two datasets which are added to thecalculated baseline data computed in the recovered baseline model. I investigate which strategyshould be adopted to get more robust and more accurate time-lapse velocity changes. Inaddition, I propose a target-oriented time-lapse imaging using regularized FWI including priormodel and model weighting, if the prior information exists on the location of expected variations.It is shown that the target-oriented inversion prevents the occurrence of artifacts outsidethe target areas, which could contaminate and compromise the reconstruction of the effectivetime-lapse changes.A sensitivity study, concerning several frequency decimations for time-lapse imaging, showsthat the frequency-domain FWI requires a large number of frequencies inverting simultaneously.By doing so, the inversion provides a more precise baseline model and more robust time-lapsevariation model with less artifacts. However, the FWI performed in the time domain appearsto be a more interesting approach for time-lapse imaging considering all frequency content.Finally, the regularized time-lapse FWI with prior model is applied to the real field timelapsedatasets provided by TOTAL. The reconstruction of local variations is part of a steaminjection project to improve the recovery of hydrocarbons: it is possible to reconstruct thevelocity variations caused by the injected steam.
机译:延时监视是获取和分析多个地震勘测的过程,在不同时间段在同一位置重复进行。由于在图像构造中的积分时间,这种地震技术被称为4D技术,它允许检测和估计通过时间演变发生的地下参数变化。特别是在工业中,监视可以提高我们对生产中的油气藏和二氧化碳存储地点的了解。分析延时地震可以帮助更好地管理储层生产程序。此外,重复的调查可以监测注入的流体前沿的演变,并可以优化考虑提高采油率(EOR)技术的注入程序。已经开发了几种使用地震波信息进行延时成像的方法。我展示了全波形反演(FWI)可用于延时成像,因为这种方法可提供高分辨率的定量地震图像。恢复地下宏观物理特性的微小变化是一种很有前途的技术。在延时应用中,经常可以使用多种先验信息资源,并应使用这些信息来提高图像的可靠性和分辨率。我通过考虑经典的不确定性模型,通过经典FWI方法中先验模型的定义介绍了此信息。另外,我建议动态加权以降低这些现有模型在最终收敛中的重要性。在现实的综合案例中,我已经展示了现有模型如何降低FWI对不太准确的初始模型的敏感性。因此,有可能获得用于4D成像的高度准确的基线模型。一旦完成基线重建,便可以使用多种策略来评估物理参数的变化。我们可以对基线和监控器模型进行两次独立的重构,然后对这两个重构模型进行减法运算。这种策略称为并行差。顺序差异策略从恢复的基线模型开始而不是从最初使用的模型开始反转监视数据集。最后,双差策略将两个数据集之间的差异数据求反,这些数据集被添加到在恢复的基准模型中计算出的基准数据中。我研究了应采用哪种策略来获得更可靠,更准确的时移速度变化。另外,如果在预期变化的位置上存在先验信息,我还建议使用包括先验模型和模型权重在内的正则化FWI进行面向目标的时移成像。灵敏度研究涉及到时移成像的多个频率抽取,结果表明频域FWI需要同时进行大量频率反转。提供了更精确的基线模型和更可靠的时差模型,且伪像更少。然而,考虑到所有频率内容,在时域中进行的FWI似乎是一种更有趣的延时成像方法。最后,将具有先验模型的正规化延时FWI应用于TOTAL提供的实地延时数据集。局部变化的重建是蒸汽注入项目的一部分,目的是提高碳氢化合物的回收率:可以重建由注入的蒸汽引起的速度变化。

著录项

  • 作者

    Asnaashari Amir;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号