首页> 外文OA文献 >Generating Rental Data for Car Sharing Relocation Simulations on the Example of Station-Based One-Way Car Sharing
【2h】

Generating Rental Data for Car Sharing Relocation Simulations on the Example of Station-Based One-Way Car Sharing

机译:基于车站的单向汽车共享实例为汽车共享搬迁模拟生成租赁数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Developing sophisticated car sharing simulations is a major task to improve car sharing as a sustainable means of transportation, because new algorithms for enhancing car sharing efficiency are formulated using them. Simulations rely on input data, which is often gathered in car sharing systems or artificially generated. Real-world data is often incomplete and biased while artificial data is mostly generated based on initial assumptions. Therefore, developing new ways for generating testing data is an important task for future research. In this paper, we propose a new approach for generating car sharing data for relocation simulations by utilizing machine learning. Based on real-world data, we could show that a combined methods approach consisting of a Gaussian Mixture Model and two classification trees can generate appropriate artificial testing data.
机译:开发复杂的汽车共享模拟是改善汽车共享作为可持续交通手段的一项主要任务,因为使用它们制定了用于提高汽车共享效率的新算法。模拟依赖于输入数据,这些数据通常收集在汽车共享系统中或人工生成。现实世界的数据通常是不完整且有偏差的,而人工数据通常是基于初始假设生成的。因此,开发新的方法来生成测试数据是未来研究的重要任务。 在本文中,我们提出了一种新的方法,该方法通过利用机器学习来生成用于共享模拟的汽车共享数据。根据实际数据,我们可以证明由高斯混合模型和两个分类树组成的组合方法可以生成适当的人工测试数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号