首页> 外文OA文献 >Breaking Bad: De-Anonymising Entity Types on the Bitcoin Blockchain Using Supervised Machine Learning
【2h】

Breaking Bad: De-Anonymising Entity Types on the Bitcoin Blockchain Using Supervised Machine Learning

机译:坏蛋:使用监督机器学习对比特币区块链上的实体类型进行去匿名化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bitcoin is a cryptocurrency whose transactions are recorded on a distributed, openly accessible ledger. On the Bitcoin Blockchain, an entity’s real-world identity is hidden behind a pseudonym, a so-called address. Therefore, Bitcoin is widely assumed to provide a high degree of anonymity, which is a driver for its frequent use for illicit activities. This paper presents a novel approach for reducing the anonymity of the Bitcoin Blockchain by using Supervised Machine Learning to predict the type of yet-unidentified entities. We utilised a sample of 434 entities with ≈ 200 million transactions), whose identity and type had been revealed, as training set data and built classifiers differentiating among 10 categories. Our main finding is that we can indeed predict the type of a yet-identified entity. Using the Gradient Boosting algorithm, we achieve an accuracy of 77% and F1-score of ≈ 0.75. We discuss our novel approach of Supervised Machine Learning for uncovering Blockchain anonymity and its potential applications to forensics and financial compliance and its societal implications, outline study limitations and propose future research directions.
机译:比特币是一种加密货币,其交易记录在一个分布式,可公开访问的分类帐中。在比特币区块链上,实体的真实世界身份隐藏在化名(所谓的地址)后面。因此,广泛认为比特币提供高度的匿名性,这是其频繁用于非法活动的驱动力。本文提出了一种通过使用监督机器学习来预测尚未识别的实体类型来减少比特币区块链匿名性的新颖方法。我们使用了434个实体的样本,这些实体的交易额和类型已经被揭示,涉及的实体和类型已经超过2亿笔,这些实体和类型已经被揭示出来,作为训练集数据并建立了区分10个类别的分类器。我们的主要发现是,我们确实可以预测尚未确定的实体的类型。使用梯度提升算法,我们实现了77%的精度和F1分数≥0.75。我们讨论了用于发现区块链匿名性的新型监督机器学习方法及其在取证和财务合规性方面的潜在应用及其社会意义,概述了研究局限性并提出了未来的研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号