首页> 外文OA文献 >A Domain Oriented LDA Model for Mining Product Defects from Online Customer Reviews
【2h】

A Domain Oriented LDA Model for Mining Product Defects from Online Customer Reviews

机译:一种面向领域的LDa模型,用于从在线客户评价中挖掘产品缺陷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Online reviews provide important demand-side knowledge for product manufacturers to improve product quality. However, discovering and quantifying potential products’ defects from large amounts of online reviews is a nontrivial task. In this paper, we propose a Latent Product Defect Mining model that identifies critical product defects. We define domain-oriented key attributes, such as components and keywords used to describe a defect, and build a novel LDA model to identify and acquire integral information about product defects. We conduct comprehensive evaluations including quantitative and qualitative evaluations to ensure the quality of discovered information. Experimental results show that the proposed model outperforms the standard LDA model, and could find more valuable information. Our research contributes to the extant product quality analytics literature and has significant managerial implications for researchers, policy makers, customers, and practitioners.
机译:在线评论为产品制造商提供了重要的需求方知识,以提高产品质量。但是,从大量的在线评论中发现和量化潜在产品的缺陷并不是一件容易的事。在本文中,我们提出了潜在产品缺陷挖掘模型,该模型可识别关键产品缺陷。我们定义了面向领域的关键属性,例如用于描述缺陷的组件和关键字,并建立了新颖的LDA模型来识别和获取有关产品缺陷的完整信息。我们进行全面评估,包括定量和定性评估,以确保发现信息的质量。实验结果表明,提出的模型优于标准的LDA模型,并且可以找到更多有价值的信息。我们的研究有助于现有的产品质量分析文献,并对研究人员,政策制定者,客户和从业人员具有重要的管理意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号