首页> 外文OA文献 >Multimodal Learning for Classification of Solar Radio Spectrum
【2h】

Multimodal Learning for Classification of Solar Radio Spectrum

机译:太阳能无线电频谱分类的多模态学习

摘要

This paper proposes the first attempt to utilize multi-modal learning method for the representation learning of the solar radio spectrums. The solar radio signals sensed from different frequency channels, which present different characteristics, are regarded as different modalities. We employ a multimodal neural network to learn the representations of the solar radio spectrum, which can distinguish the differences and learn the interactions between different modalities. The original solar radio spectrums are firstly pre-processed, including normalization, denoising, channel competition and etc., before being fed into the multimodal learning network. Experimental results have demonstrated that the proposed multimodal learning network can learn the representation of the solar radio spectrum more effectively, and improve the classification accuracy.
机译:本文提出了利用多模态学习方法进行太阳无线电频谱表示学习的首次尝试。从具有不同特征的不同频道感测到的太阳无线电信号被认为是不同的形式。我们采用多模态神经网络来学习太阳无线电频谱的表示,它可以区分差异并学习不同模态之间的相互作用。首先将原始的太阳无线电频谱进行预处理,包括归一化,降噪,信道竞争等,然后再输入多模式学习网络。实验结果表明,提出的多模态学习网络可以更有效地学习太阳无线电频谱的表示,并提高分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号