首页> 外文OA文献 >The application of multivariate statistical analysis and batch process control in industrial processes
【2h】

The application of multivariate statistical analysis and batch process control in industrial processes

机译:多元统计分析和批量过程控制在工业过程中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To manufacture safe, effective and affordable medicines with greater efficiency, process analytical technology (PAT) has been introduced by the Food and Drug Agency to encourage the pharmaceutical industry to develop and design well-understood processes. PAT requires chemical imaging techniques to be used to collect process variables for real-time process analysis. Multivariate statistical analysis tools and process control tools are important for implementing PAT in the development and manufacture of pharmaceuticals as they enable information to be extracted from the PAT measurements. Multivariate statistical analysis methods such as principal component analysis (PCA) and independent component analysis (ICA) are applied in this thesis to extract information regarding a pharmaceutical tablet. ICA was found to outperform PCA and was able to identify the presence of five different materials and their spatial distribution around the tablet.Another important area for PAT is in improving the control of processes. In the pharmaceutical industry, many of the processes operate in a batch strategy, which introduces difficult control challenges. Near-infrared (NIR) spectroscopy is a non-destructive analytical technique that has been used extensively to extract chemical and physical information from a product sample based on the scattering effect of light. In this thesis, NIR measurements were incorporated as feedback information into several control strategies. Although these controllers performed reasonably well, they could only regulate the NIR spectrum at a number of wavenumbers, rather than over the full spectrum.In an attempt to regulate the entire NIR spectrum, a novel control algorithm was developed. This controller was found to be superior to the only comparable controller and able to regulate the NIR similarly. The benefits of the proposed controller were demonstrated using a benchmark simulation of a batch reactor.
机译:为了更高效地生产安全,有效和负担得起的药物,食品药品管理局(FDA)引入了过程分析技术(PAT),以鼓励制药业开发和设计易于理解的过程。 PAT需要使用化学成像技术来收集过程变量以进行实时过程分析。多元统计分析工具和过程控制工具对于在药物开发和制造中实施PAT至关重要,因为它们使您可以从PAT测量中提取信息。本文采用多变量统计分析方法,如主成分分析(PCA)和独立成分分析(ICA),以提取有关片剂的信息。发现ICA的性能优于PCA,并且能够识别出五种不同物质的存在及其在片剂周围的空间分布.PAT的另一个重要领域是改善工艺控制。在制药行业中,许多过程以批处理策略运行,这带来了困难的控制挑战。近红外(NIR)光谱技术是一种无损分析技术,已广泛用于根据光的散射效果从产品样品中提取化学和物理信息。本文将近红外测量作为反馈信息纳入了几种控制策略。尽管这些控制器的表现相当不错,但它们只能在许多波数上调节NIR谱,而不能在整个波谱上进行调节。为调节整个NIR谱,尝试开发了一种新颖的控制算法。发现该控制器优于唯一的同类控制器,并且能够类似地调节NIR。拟议的控制器的优势已通过批处理反应器的基准仿真得到了证明。

著录项

  • 作者

    Lennox Barry; Lin Haisheng;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号