Large scale nuclear fusion and astronomy scientific programmes have increased the demand for large freeform mirrors and lenses. Thousands of one metre class, high quality aspherical optical components are required within the next five to ten years. Current manufacturing process chains production time need to be reduced from hundred hours to ten hours. As part of a new process chain for making large optics, an efficient low damage precision grinding process has been proposed. This grinding process aims to shorten the subsequent manufacturing operations. The BoX R grinding machine, built by Cranfield University, provides a rapid and economic solution for grinding large off-axis aspherical and free-form optical components. This thesis reports the development of a precision grinding process for rapid manufacturing of large optics using this grinding mode. Grinding process targets were; form accuracy of 1 m over 1 metre, surface roughness 150 nm (Ra) and subsurface damage below 5 m. Process time target aims to remove 1 mm thickness of material over a metre in ten hours. Grinding experiments were conducted on a 5 axes Edgetek high speed grinding machine and BoX R grinding machine. The surface characteristics obtained on optical materials (ULE, SiC and Zerodur) are investigated. Grinding machine influence on surface roughness, surface profile, subsurface damage, grinding forces and grinding power are discussed. This precision grinding process was validated on large spherical parts, 400 mm ULE and SiC parts and a 1 m Zerodur hexagonal part. A process time of ten hours was achieved using maximum removal rate of 187.5 mm 3 /s on ULE and Zerodur and 112.5 mm 3 /s on SiC. The subsurface damage distribution is shown to be "process" related and "machine dynamics" related. The research proves that a stiffer grinding machine, BoX, induces low subsurface damage depth in glass and glass ceramic.
展开▼
机译:大规模的核聚变和天文学科学计划增加了对大型自由曲面镜和透镜的需求。在未来的五到十年内,将需要成千上万种级别的高质量非球面光学组件。当前的制造流程链的生产时间需要从百小时减少到十小时。作为用于制造大型光学器件的新工艺链的一部分,已经提出了一种有效的低损伤精密研磨工艺。该研磨过程旨在缩短随后的制造操作。由克兰菲尔德大学(Cranfield University)制造的BoX R研磨机为研磨大型离轴非球面和自由形式的光学组件提供了一种快速,经济的解决方案。本文报道了使用这种研磨模式快速制造大型光学器件的精密研磨工艺的发展。研磨工艺目标是:超过1米的精度为1 m,表面粗糙度为150 nm(Ra),低于5 m的亚表面损坏。加工时间目标旨在在十小时内在一米内去除1毫米厚的材料。研磨实验是在5轴Edgetek高速研磨机和BoX R研磨机上进行的。研究了在光学材料(ULE,SiC和Zerodur)上获得的表面特性。讨论了磨床对表面粗糙度,表面轮廓,亚表面损伤,磨削力和磨削力的影响。这种精密磨削工艺已在大型球形零件,400 mm ULE和SiC零件以及1 m Zerodur六角形零件上得到验证。使用ULE和Zerodur的最大去除速率为187.5 mm 3 / s,而SiC的最大去除速率为112.5 mm 3 / s,可以达到十小时的处理时间。地下损伤分布显示为与“过程”相关且与“机器动力学”相关。研究证明,更坚硬的研磨机BoX可以在玻璃和玻璃陶瓷中产生较低的亚表面破坏深度。
展开▼