首页> 外文OA文献 >Working with collinearity in epidemiology : development of collinearity diagnostics, identifying latent constructs in exploratory research and dealing with perfectly collinear variables in regression
【2h】

Working with collinearity in epidemiology : development of collinearity diagnostics, identifying latent constructs in exploratory research and dealing with perfectly collinear variables in regression

机译:在流行病学中使用共线性:共线性诊断的发展,在探索性研究中识别潜在构造并在回归中处理完全共线的变量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collinearity plays an integral role in regression studies involving epidemiological data. Variables often form part of a common biological mechanism or measure the same element of a latent structure. It is a natural feature of most data and as such it is rarely possible to physically control for collinearity in data collection. A focus is placed on the analytical assessment of the data. Departures from independence can severely distort the interpretation of a model and the role of each covariate. This leads to increased inaccuracy as expressed through the regression coefficients and increased uncertainty as expressed through coefficient standard errors. Such a feature has the potential to impact on the clinical conclusions formed from regression studies. The work in this thesis first considers an assessment of the impact of collinearity on model parameters and the conclusions formed. A new collinearity index is developed which incorporates the role of the response in moderating the impact of collinearity. The idea for the new index is developed using vector geometry and extended to a general measure. The work in collinearity is later extended to consider the formation of a dependency structure from a collection of collinear variables. A novel methodology, labelled the matroid approach, is coded and implemented on a metabolic syndrome dataset to extract a latent structure that could represent this clinical construct. Comparisons are subsequently made to existing exploratory factor analysis and clustering methods in the literature. Finally, the unique problem of perfect collinearity is considered in a lifecourse and age-period-cohort setting. The justification of constraint and non-constraint regression methods is considered in an attempt to provide ‘solutions’ to the identification problem generated by collinearity.
机译:共线性在涉及流行病学数据的回归研究中起着不可或缺的作用。变量通常构成共同的生物学机制的一部分,或衡量潜在结构的相同元素。这是大多数数据的自然特征,因此,几乎不可能对数据收集中的共线性进行物理控制。重点放在数据的分析评估上。脱离独立性会严重扭曲模型的解释以及每个协变量的作用。这导致通过回归系数表示的不准确性增加,以及通过系数标准误差表示的不确定性增加。这样的功能可能会影响回归研究得出的临床结论。本文的工作首先考虑对共线性对模型参数的影响进行评估,并得出结论。开发了一种新的共线性指标,其中纳入了响应在减轻共线性影响方面的作用。新索引的想法是使用矢量几何学开发的,并已扩展到一般度量。共线性的工作后来扩展到考虑从共线性变量集合中形成依赖结构的情况。标记为拟阵线方法的新方法在新陈代谢综合症数据集上进行编码和实施,以提取可能代表此临床构造的潜在结构。随后与文献中现有的探索性因素分析和聚类方法进行比较。最后,在生命历程和年龄组中考虑了完美共线性的独特问题。考虑使用约束和非约束回归方法的合理性,旨在为共线性所产生的识别问题提供“解决方案”。

著录项

  • 作者

    Woolston Andrew Stephen;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号