首页> 外文OA文献 >Monolithic integration for nonlinear optical frequency conversion in semiconductor waveguides
【2h】

Monolithic integration for nonlinear optical frequency conversion in semiconductor waveguides

机译:半导体波导中非线性光学频率转换的单片集成

摘要

This thesis presents an investigation into the feasibility of tunable, monolithically integrated, nonlinear optical frequency conversion sources which work under the principles of an optical parametric oscillator (OPO). The room-temperature continuous wave (CW) operation of these devices produces narrow line-width, near- and mid-infrared wavelengths, primarily used in chemical sensing applications. The devices detailed here, based on the GaAs–AlGaAs superlattice material system, benefit from post growth, ion implantation induced, quantum well intermixing, to achieve 1st order phase matching. The experiments, which have been performed to optimize the second-order nonlinear processes in our GaAs–AlGaAs superlattice waveguides, have demonstrated improved conversion efficiencies when compared to the performance achieved previously in similar superlattice nonlinear waveguides. We have achieved pulsed type-I phase matched second harmonic generation (SHG) with powers up to 3.65 μW (average pulse power), CW type-I phase matched SHG up to 1.6 μW for the first time, and pulsed type-II phase matched SHG up to 2 μW (average pulse power), again for the first time. Moreover, we have been able to achieve both CW type-I and CW type-II phase matched difference frequency generation, which converts C-band wavelengths into L- and U-band wavelengths, over at least a 20 nm conversion bandwidth. These results have been made possible through the systematic optimization of processes developed to fabricate nonlinear optical waveguides. Fabrication processes have also been developed to facilitate the incorporation of on-chip lasers and optical routing components, required to achieve a fully integrated OPO and nonlinear optical frequency converter. The optical routing in these devices has been demonstrated using a frequency selective multi-mode interference (MMI) coupler. The superlattice laser material has been designed by optimizing the material structure and employing different growth technologies. Room-temperature CW laser action has been achieved in 100 nm thick, superlattice core, half-ring lasers. The laser excitation is measured at 801 nm, and the internal power of the on-chip pump is estimated to be in excess of 200 mW in a full-ring, after accounting for optical routing, linear, bending and nonlinear losses. We have been able to conclude that our designed OPO and frequency converter is just feasible with the performance achieved in different components.
机译:本文对可调谐,单片集成,非线性光频率转换源的可行性进行了研究,该可调谐源在光参量振荡器(OPO)的原理下工作。这些设备的室温连续波(CW)操作产生窄的线宽,近红外和中红外波长,主要用于化学传感应用。此处详细介绍的基于GaAs-AlGaAs超晶格材料系统的器件受益于后期生长,诱导的离子注入,量子阱混合,从而实现一阶相位匹配。为了优化我们的GaAs-AlGaAs超晶格波导中的二阶非线性过程而进行的实验,与以前在类似的超晶格非线性波导中实现的性能相比,已经证明了更高的转换效率。我们已经实现了功率高达3.65μW(平均脉冲功率)的脉冲I型相位匹配二次谐波(SHG),首次实现了高达1.6μW的CW I型相位匹配二次谐波,以及II型脉冲相位匹配SHG首次达到2μW(平均脉冲功率)。而且,我们已经能够实现CW I型和CW II型相位匹配差分频率生成,该技术可以在至少20 nm的转换带宽上将C波段波长转换为L波段和U波段波长。通过开发用于制造非线性光波导的工艺的系统优化,可以使这些结果成为可能。还开发了制造工艺,以促进集成完全集成的OPO和非线性光学变频器所需的片上激光器和光学路由组件的结合。这些设备中的光路由已使用频率选择性多模干扰(MMI)耦合器进行了演示。通过优化材料结构并采用不同的生长技术来设计超晶格激光材料。在100 nm厚,超晶格芯,半环激光器中已实现了室温CW激光作用。在考虑了光路,线性,弯曲和非线性损耗之后,在801 nm处测量了激光激发,在整个环中,片上泵的内部功率估计超过200 mW。我们已经可以得出结论,我们设计的OPO和变频器在不同组件中实现的性能才是可行的。

著录项

  • 作者

    Younis Usman;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号