首页> 外文OA文献 >Monitoring and modeling slope dynamics in an Alpine watershed – a combined approach of soil science, remote sensing and geomorphology
【2h】

Monitoring and modeling slope dynamics in an Alpine watershed – a combined approach of soil science, remote sensing and geomorphology

机译:监测和模拟高山流域的斜坡动力学–土壤科学,遥感和地貌学的组合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Steep and unvegetated slopes in mountainous areas play an important role in erosion research as they deliver large quantities of sediments to the lowlands. However, their complex hydrological process combinations are challenging for any modelling and forecasting intention. Due to its high morphodynamic activity the Lainbach valley in southern Bavaria, Germany, has repeatedly been subject to studies on erosional processes. We present a further developed approach of physically based erosion modelling on strongly inclined and heavily dissected slopes. Model parameters were spatially and temporally distributed and a statistical model was tested to compare both findings to a previous study in the same catchment on a different slope. High resolution surface models from laser scans served as validation for the modelling results and for monitoring soil loss. Especially an adjustment of hydraulic roughness values improved the results, whereas rill hydraulics demand further investigation for future model development. The study at hand focusses on the summer period and reveals adequate modelling results (98.4% agreement in volume loss) with regard to the slope's non-stationary behaviour but leaves room for improvement for the winter period.
机译:山区的陡峭而无植被的斜坡在侵蚀研究中起着重要作用,因为它们向低地输送了大量的沉积物。然而,它们复杂的水文过程组合对于任何建模和预测意图都具有挑战性。由于其高形态动力学活性,德国南部巴伐利亚州的莱恩巴赫河谷已多次受到侵蚀过程的研究。我们提出了进一步开发的方法,以物理方法对强倾斜和重度解剖的斜坡进行侵蚀建模。模型参数在空间和时间上分布,并测试了统计模型,以将这两个发现与以前在同一流域不同坡度的研究进行比较。来自激光扫描的高分辨率表面模型可用于验证模型结果和监测土壤流失。特别是调整水力粗糙度值可以改善结果,而凿岩水力需要对未来的模型开发进行进一步的研究。当前的研究集中在夏季,并揭示了关于斜坡的非平稳行为的足够的建模结果(体积损失达98.4%一致),但在冬季有改善的余地。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号