首页> 外文OA文献 >Personalising learning with dynamic prediction and adaptation to learning styles in a conversational intelligent tutoring system
【2h】

Personalising learning with dynamic prediction and adaptation to learning styles in a conversational intelligent tutoring system

机译:在会话智能辅导系统中通过动态预测和适应学习风格来个性化学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents research that combines the benefits of intelligent tutoring systems (ITS), conversational agents (CA) and learning styles theory by constructing a novel conversational intelligent tutoring system (CITS) called Oscar. Oscar CITS aims to imitate a human tutor by implicitly predicting individuals’ learning style preferences and adapting its tutoring style to suit them during a tutoring conversation. ITS are computerised learning systems that intelligently personalise tutoring based on learner characteristics such as existing knowledge and learning style. ITS are traditionally student-led, hyperlink-based learning systems that adapt the presentation of learning resources by reordering or hiding links. Research suggests that students learn more effectively when instruction matches their learning style, which is typically modelled explicitly using questionnaires or implicitly based on behaviour. Learning is a social process and natural language interfaces to ITS, such as CAs, allow students to construct knowledge through discussion. Existing CITS adapt tutoring according to student knowledge, emotions and mood, however no CITS adapts to learning styles. Oscar CITS models a human tutor by directing a tutoring conversation and automatically detecting and adapting to an individual’s learning styles. Original methodologies and architectures were developed for constructing an Oscar Predictive CITS and an Oscar Adaptive CITS. Oscar Predictive CITS uses knowledge captured from a learning styles model to dynamically predict learning styles from an individual’s tutoring dialogue. Oscar Adaptive CITS applies a novel adaptation algorithm to select the best tutoring style for each tutorial question. The Oscar CITS methodologies and architectures are independent of the learning styles model and subject domain. Empirical studies involving real students have validated the prediction and adaptation of learning styles in a real-world teaching/learning environment. The results show that learning styles can be successfully predicted from a natural language tutoring dialogue, and that adapting the tutoring style significantly improves learning performance.
机译:本文通过构建一种称为Oscar的新型对话式智能辅导系统(CITS),结合了智能辅导系统(ITS),会话代理(CA)和学习风格理论的优势进行了研究。奥斯卡CITS旨在通过隐式预测个人的学习风格偏好并在辅导对话期间调整其辅导风格以适应他们的情况来模仿人类导师。 ITS是一种计算机化的学习系统,可根据学习者的特征(例如现有知识和学习风格)智能地个性化辅导。传统上,ITS是学生主导的,基于超链接的学习系统,通过重新排序或隐藏链接来适应学习资源的显示。研究表明,当教学与他们的学习方式相匹配时,学生会更有效地学习,这通常是使用调查表显式建模或基于行为隐式建模。学习是一个社会过程,与ITS(例如CA)的自然语言接口使学生可以通过讨论来构建知识。现有的CITS根据学生的知识,情绪和情绪来调整家教,但是没有CITS会适应学习风格。 Oscar CITS通过指导补习对话并自动检测并适应个人的学习风格来为人类补习师建模。开发了用于构建Oscar预测CITS和Oscar自适应CITS的原始方法和体系结构。 Oscar Predictive CITS使用从学习风格模型中获取的知识来根据个人的辅导对话动态预测学习风格。 Oscar Adaptive CITS应用了一种新颖的自适应算法来为每个教程问题选择最佳的辅导风格。 Oscar CITS的方法和体系结构与学习风格模型和学科领域无关。涉及真实学生的实证研究已经验证了在真实世界的教学/学习环境中学习风格的预测和适应。结果表明,可以通过自然语言补习对话成功地预测学习风格,并且适应这种补习风格可以显着提高学习效果。

著录项

  • 作者

    Latham Annabel Marie;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号