首页> 外文OA文献 >Edge-based mining of frequent subgraphs from graph streams
【2h】

Edge-based mining of frequent subgraphs from graph streams

机译:从图流基于边缘的频繁子图挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the current era of Big data, high volumes of valuable data can be generated at a high velocity from high-varieties of data sources in various real-life applications ranging from sensor networks to social networks, from bio-informatics to chemical informatics. In addition, Big data are also available in business, education, engineering, finance, healthcare, scientific, telecommunication, and transportation domains. A collection of these data can be viewed as a big dynamic graph structure. Embedded in them are implicit, previously unknown, and potentially useful knowledge. Consequently, efficient knowledge discovery algorithms for mining frequent subgraphs from these dynamic streaming graph structured data are in demand. On the one hand, some existing algorithms discover collections of frequently co-occurring edges, which may be disjoint. On the other hand, some other existing algorithms discover frequent subgraphs by requiring very large memory space. With high volumes of Big data, available memory space may be limited. To discover collections of frequently co-occurring connected edges, we present in this paper two efficient algorithms that require small memory space. Evaluation results show the efficiency of our edge-based algorithms in mining frequent subgraphs from graph streams.
机译:在当今的大数据时代,从传感器网络到社交网络,从生物信息学到化学信息学,各种现实生活中的各种数据源都可以高速生成大量有价值的数据。此外,大数据还可以用于商业,教育,工程,金融,医疗,科学,电信和运输领域。这些数据的收集可以看作是一个很大的动态图结构。嵌入其中的是隐性,先前未知的和潜在有用的知识。因此,需要用于从这些动态流图结构化数据中挖掘频繁子图的高效知识发现算法。一方面,一些现有算法发现了频繁出现的边缘的集合,这些边缘可能是不相交的。另一方面,其他一些现有算法通过需要非常大的存储空间来发现频繁的子图。大量海量数据可能会限制可用的存储空间。为了发现频繁共生的连接边的集合,我们在本文中提出了两种有效的算法,它们需要较小的存储空间。评估结果表明,基于边缘的算法在从图流中挖掘频繁子图的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号